CC-GNN: A Clustering Contrastive Learning Network for Graph Semi-Supervised Learning

被引:0
|
作者
Qin, Peng [1 ,2 ]
Chen, Weifu [3 ]
Zhang, Min [1 ]
Li, Defang [4 ]
Feng, Guocan [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Guangdong Prov Key Lab, Guangzhou 510275, Peoples R China
[3] Guangzhou Maritime Univ, Coll Informat & Telecommun Engn, Guangzhou 510725, Peoples R China
[4] Guangzhou Vocat Coll Technol & Business, Guangzhou 511442, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Data augmentation; Graph neural networks; Clustering algorithms; Data models; Semisupervised learning; Analytical models; Task analysis; Clustering contrastive learning; graph data augmentation; graph neural networks; semi-supervised graph learning;
D O I
10.1109/ACCESS.2024.3398356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In graph modeling, scarcity of labeled data is a challenging issue. To address this issue, state-of-the-art graph models learn the representation of graph data via contrastive learning. Those models usually use data augmentation techniques to generate positive pairs for contrastive learning, which aims to maximize the similarity of positive data pairs while minimizing the similarity of negative data pairs. However, samples with the same labels may be separately mapped in the feature space. To solve this problem, we introduce a novel model called Clustering Contrastive Graph Neural Network (CC-GNN), which develops a new kind of grouped contrastive learning that maximizes the similarity of positive data groups and minimizes the similarity of negative groups. That is, contrastive learning is defined on a group level rather than on an instant level. We assert that parameters learned by this kind of contrastive learning will lead to better performance of graph neural networks for downstream classification tasks. We combined the clustering contrastive learning technique with three baseline GNN models for graph classification. We found that the performance of these models was significantly improved, which strongly supports our assertion. We also testified the models for node classification on three popular citation networks. Finally, we conducted an ablation study to analyze how the clustering contrastive learning influence the performance of a graph model.
引用
收藏
页码:71956 / 71969
页数:14
相关论文
共 50 条
  • [21] CONTRASTIVE LEARNING FOR ONLINE SEMI-SUPERVISED GENERAL CONTINUAL LEARNING
    Michel, Nicolas
    Negrel, Romain
    Chierchia, Giovanni
    Bercher, Jean-Francois
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1896 - 1900
  • [22] Graph Construction for Semi-Supervised Learning
    Berton, Lilian
    Lopes, Alneu de Andrade
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4343 - 4344
  • [23] ASCL: Accelerating semi-supervised learning via contrastive learning
    Liu, Haixiong
    Li, Zuoyong
    Wu, Jiawei
    Zeng, Kun
    Hu, Rong
    Zeng, Wei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (28):
  • [24] Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels
    Wan, Sheng
    Zhan, Yibing
    Liu, Liu
    Yu, Baosheng
    Pan, Shirui
    Gong, Chen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [25] DualGraph: Improving Semi-supervised Graph Classification via Dual Contrastive Learning
    Luo, Xiao
    Ju, Wei
    Qu, Meng
    Chen, Chong
    Deng, Minghua
    Hua, Xian-Sheng
    Zhang, Ming
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 699 - 712
  • [26] Label-guided graph contrastive learning for semi-supervised node classification
    Peng, Meixin
    Juan, Xin
    Li, Zhanshan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [27] CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data
    Yu, Hang
    Wen, Jiahao
    Sun, Yiping
    Wei, Xiao
    Lu, Jie
    IEEE TRANSACTIONS ON CYBERNETICS, 2025, 55 (02) : 684 - 697
  • [28] CC-GNN: A Community and Contraction-based Graph Neural Network
    Li, Zhiyuan
    Jian, Xun
    Wang, Yue
    Chen, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 231 - 240
  • [29] GANN: Graph Alignment Neural Network for semi-supervised learning
    Song, Linxuan
    Tu, Wenxuan
    Zhou, Sihang
    Zhu, En
    PATTERN RECOGNITION, 2024, 154
  • [30] Semi-supervised Learning with Ensemble Learning and Graph Sharpening
    Choi, Inae
    Shin, Hyunjung
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2008, 2008, 5326 : 172 - 179