Advancing bioenergetics-based modeling to improve climate change projections of marine ecosystems

被引:4
作者
Rose, Kenneth A. [1 ]
Holsman, Kirstin [2 ]
Nye, Janet A. [3 ]
Markowitz, Emily H. [2 ]
Banha, Thomas N. S. [4 ]
Bednarsek, Nina [5 ,27 ]
Bueno-Pardo, Juan [6 ]
Deslauriers, David [7 ]
Fulton, Elizabeth A. [8 ]
Huebert, Klaus B. [9 ]
Huret, Martin [10 ]
Ito, Shin-ichi [11 ]
Koenigstein, Stefan [12 ,13 ]
Li, Lingbo [14 ]
Moustahfid, Hassan [15 ]
Muhling, Barbara A. [12 ,13 ]
Neubauer, Philipp [16 ]
Paula, Jose Ricardo [17 ,18 ,19 ,20 ]
Siddon, Elizabeth C. [21 ]
Skogen, Morten D. [22 ]
Spencer, Paul D. [2 ]
van Denderen, P. Daniel [23 ]
Der Meeren, Gro I. van [24 ]
Peck, Myron A. [25 ,26 ]
机构
[1] Univ Maryland, Ctr Environm Sci, Horn Point Lab, Cambridge, MD 21613 USA
[2] NOAA Fisheries, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA
[3] Univ North Carolina Chapel Hill, Inst Marine Sci, Earth Marine & Environm Sci, 3431 Arendell St, Morehead City, NC 28557 USA
[4] Univ Sao Paulo, Ctr Biol Marinha, BR-11612109 Sao Sebastiao, SP, Brazil
[5] Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, 2030 SE Marine Dr, Newport, OR 97365 USA
[6] Univ Vigo, Ctr Invest Marina, Future Oceans Lab, Vigo 36310, Spain
[7] Univ Quebec Rimouski, Inst Sci Mer Rimouski, 310 Allee Ursulines, Rimouski, PQ G5L 3A1, Canada
[8] CSIRO Environm, GPO Box 1538, Hobart, Tas 7001, Australia
[9] CSS Inc, 2750 Prosper Ave, Fairfax, VA 22031 USA
[10] IFREMER, Inst Agro, DECOD Ecosyst Dynam & Sustainabil, INRAE, F-29280 Plouzane, France
[11] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan
[12] Univ Calif Santa Cruz, Inst Marine Sci, Fisheries Collaborat Program, NOAA, Santa Cruz, CA 95064 USA
[13] NOAA Fisheries, Southwest Fisheries Sci Ctr, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA
[14] Fisheries & Oceans Canada, Bedford Inst Oceanog, 1 Challenger Dr, Dartmouth, NS B2Y 4A2, Canada
[15] NOAA, US Integrated Ocean Observing Syst, 1315 East West Highway, Silver Spring, MD 20910 USA
[16] Dragonfly Data Sci, POB 27535, Wellington 6141, New Zealand
[17] Univ Lisbon, Fac Ciencias, MARE Marine & Environm Sci Ctr, Ave Nossa Senhora do Cabo 939, P-2750374 Cascais, Portugal
[18] Univ Lisbon, Lab Maritimo Guia, ARNET Aquat Res Network, Fac Ciencias, Ave Nossa Senhora do Cabo 939, P-2750374 Cascais, Portugal
[19] Univ Lisbon, Fac Ciencias, Dept Biol Anim, P-1749016 Lisbon, Portugal
[20] Univ Hawaii Manoa, Hawaii Inst Marine Biol, Kaneohe, HI 96744 USA
[21] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA
[22] Inst Marine Res, POB 1870 Nordnes, N-5817 Bergen, Norway
[23] Tech Univ Denmark, Natl Inst Aquat Resources, Ctr Ocean Life, Kemitorvet Bldg 202, DK-2800 Lyngby, Denmark
[24] Inst Marine Res, Austevoll Res Stn, Sauganeset 16, N-5392 Storebo, Norway
[25] Royal Netherlands Inst Sea Res, Dept Coastal Syst, POB 59, NL-1790 Den Burg, Texel, Netherlands
[26] Wageningen Univ, Dept Anim Sci, Marine Anim Ecol Grp, NL-6700 HB Wageningen, Netherlands
[27] Jozef Stefan Inst, Dept Environm Sci, Ljubljana 1000, Slovenia
关键词
Bioenergetics; Modeling; Climate change; Fish; Projections; Challenges; Agent-based; ENERGY BUDGET THEORY; SARDINE SARDINOPS-MELANOSTICTUS; SMELT POPULATION-DYNAMICS; COD GADUS-MACROCEPHALUS; TUNA KATSUWONUS-PELAMIS; INDIVIDUAL-BASED MODEL; FISH POPULATIONS; OCEAN ACIDIFICATION; THERMAL TOLERANCE; TROPHIC INTERACTIONS;
D O I
10.3354/meps14535
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Climate change has rapidly altered marine ecosystems and is expected to continue to push systems and species beyond historical baselines into novel conditions. Projecting responses of organisms and populations to these novel environmental conditions often requires extrapolations beyond observed conditions, challenging the predictive limits of statistical modeling capabilities. Bioenergetics modeling provides the mechanistic basis for projecting climate change effects on marine living resources in novel conditions, has a long history of development, and has been applied widely to fish and other taxa. We provide our perspective on 4 opportunities that will advance the ability of bioenergetics-based models to depict changes in the productivity and distribution of fishes and other marine organisms, leading to more robust projections of climate impacts. These are (1) improved depiction of bioenergetics processes to derive realistic individual-level response(s) to complex changes in environmental conditions, (2) innovations in scaling individual-level bioenergetics to project responses at the population and food web levels, (3) more realistic coupling between spatial dynamics and bioenergetics to better represent the local- to regional-scale differences in the effects of climate change on the spatial distributions of organisms, and (4) innovations in model validation to ensure that the next generation of bioenergetics-based models can be used with known and sufficient confidence. Our focus on specific opportunities will enable critical advancements in bioenergetics modeling and position the modeling community to make more accurate and robust projections of the effects of climate change on individuals, populations, food webs, and ecosystems.
引用
收藏
页码:193 / 221
页数:29
相关论文
共 304 条
  • [1] Transportation and predation control structures the distribution of a key calanoid in the Nordic Seas
    Aarflot, Johanna M.
    Hjollo, Solfrid S.
    Strand, Espen
    Skogen, Morten D.
    [J]. PROGRESS IN OCEANOGRAPHY, 2022, 202
  • [2] Adamack A. T., 2017, Modeling Coastal Hypoxia, P319, DOI [10.1007/978-3-319-54571-412, DOI 10.1007/978-3-319-54571-412]
  • [3] Modeling the effects of temperature on the survival and growth of North Sea cod (Gadus morhua) through the first year of life
    Akimova, A.
    Hufnagl, M.
    Kreus, M.
    Peck, M. A.
    [J]. FISHERIES OCEANOGRAPHY, 2016, 25 (03) : 193 - 209
  • [4] Temperature increase and its effects on fish stress physiology in the context of global warming
    Alfonso, Sebastien
    Gesto, Manuel
    Sadoul, Bastien
    [J]. JOURNAL OF FISH BIOLOGY, 2021, 98 (06) : 1496 - 1508
  • [5] Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish
    Allan, Bridie J. M.
    Domenici, Paolo
    Watson, Sue Ann
    Munday, Philip L.
    McCormick, Mark I.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 284 (1857)
  • [6] Challenges, tasks, and opportunities in modeling agent-based complex systems
    An, Li
    Grimm, Volker
    Sullivan, Abigail
    Turner, B. L., II
    Malleson, Nicolas
    Heppenstall, Alison
    Vincenot, Christian
    Robinson, Derek
    Ye, Xinyue
    Liu, Jianguo
    Lindkvist, Emilie
    Tang, Wenwu
    [J]. ECOLOGICAL MODELLING, 2021, 457
  • [7] Andersen KH, 2019, Monographs in Population Biology, V62
  • [8] Atlantic salmon show capability for cardiac acclimation to warm temperatures
    Anttila, Katja
    Couturier, Christine S.
    Overli, Oyvind
    Johnsen, Arild
    Marthinsen, Gunnhild
    Nilsson, Goran E.
    Farrell, Anthony P.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [9] Changes in energy intake and cost of transport by skipjack tuna (Katsuwonus pelamis) during northward migration in the northwestern Pacific Ocean
    Aoki, Yoshinori
    Kitagawa, Takashi
    Kiyofuji, Hidetada
    Okamoto, Suguru
    Kawamura, Tomohiko
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2017, 140 : 83 - 93
  • [10] Atlantis: A spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economic modules
    Audzijonyte, Asta
    Pethybridge, Heidi
    Porobic, Javier
    Gorton, Rebecca
    Kaplan, Isaac
    Fulton, Elizabeth A.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (10): : 1814 - 1819