Bipedal Walking Robot Control Using PMTG Architecture

被引:0
作者
Danilov, Vladimir [1 ,3 ]
Klimov, Konstantin [2 ,3 ]
Kapytov, Dmitrii [2 ,3 ]
Diane, Sekou [1 ]
机构
[1] Russian Acad Sci, Inst Control Problems, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Robot Lab, Inst Mech Lomonosov, Michurinsky Prosp 1, Moscow 119192, Russia
[3] Voltbro LCC, Moscow, Russia
来源
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 2, CLAWAR 2023 | 2024年 / 811卷
关键词
Reinforcement learning; Locomotion; CPG; Walking robot; LOCOMOTION;
D O I
10.1007/978-3-031-47272-5_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning based methods can achieve excellent results for robot locomotion control. However, their serious disadvantage is the long agent training time and large number of parameters defining its behavior. In this paper, we propose a method that significantly reduces training time. It is based on the Policy Modulating Trajectory Generator (PMTG) architecture, which uses Central Pattern Generators (CPG) as a gait generator. We tested this approach on an OpenAI BipedalWalker-v3 environment. The paper presents the results of this algorithm, showing its effectiveness in solving a locomotion problem over challenging terrain.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 20 条
  • [1] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [2] OPTIMIZATION AND GAITS IN THE LOCOMOTION OF VERTEBRATES
    ALEXANDER, RM
    [J]. PHYSIOLOGICAL REVIEWS, 1989, 69 (04) : 1199 - 1227
  • [3] Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots
    Bjelonic, Marko
    Grandia, Ruben
    Harley, Oliver
    Galliard, Cla
    Zimmermann, Samuel
    Hutter, Marco
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 8388 - 8395
  • [4] Brockman G, 2016, Arxiv, DOI [arXiv:1606.01540, DOI 10.48550/ARXIV.1606.01540]
  • [5] Danilov V, 2022, Robotics in Natural Settings: CLAWAR 2022, P276, DOI [10.1007/978- 3- 031-15226-9 27, DOI 10.1007/978-3-031-15226-927]
  • [6] Di Carlo J, 2018, IEEE INT C INT ROBOT, P7440, DOI 10.1109/IROS.2018.8594448
  • [7] github, OpenAI Gym Leaderboard
  • [8] Haarnoja T, 2018, arXiv
  • [9] Learning agile and dynamic motor skills for legged robots
    Hwangbo, Jemin
    Lee, Joonho
    Dosovitskiy, Alexey
    Bellicoso, Dario
    Tsounis, Vassilios
    Koltun, Vladlen
    Hutter, Marco
    [J]. SCIENCE ROBOTICS, 2019, 4 (26)
  • [10] Iscen A., 2018, PMLR, P916