Prediction of Compressive Strength of Concrete Specimens Based on Interpretable Machine Learning

被引:1
|
作者
Wang, Wenhu [1 ]
Zhong, Yihui [1 ]
Liao, Gang [1 ]
Ding, Qing [1 ]
Zhang, Tuan [1 ]
Li, Xiangyang [1 ]
机构
[1] Power China Chengdu Engn Corp Ltd, Chengdu 610031, Peoples R China
关键词
compressive strength; machine learning; XGBoost; SHAP;
D O I
10.3390/ma17153661
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aim of this paper is to explore an effective model for predicting the compressive strength of concrete using machine learning technology, as well as to interpret the model using an interpretable method, which overcomes the limitation of the unknowable prediction processes of previous machine learning models. An experimental database containing 228 samples of the compressive strength of standard cubic specimens was built in this study, and six algorithms were applied to build the predictive model. The results show that the XGBoost model has the highest prediction accuracy among all models, as the R2 of the training set and testing set are 0.982 and 0.966, respectively. Further analysis was conducted on the XGBoost model to discuss its applicability. The main steps include the following: (i) obtaining key features, (ii) obtaining trends in the evolution of features, (iii) single-sample analysis, and (iv) conducting a correlation analysis to explore methods of visualizing the variations in the factors that exert influence. The interpretability analyses on the XGBoost model show that the contribution to the compressive strength by each factor is highly in line with the conventional theory. In summary, the XGBoost model proved to be effective in predicting concrete's compressive strength.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interpretable machine learning models for concrete compressive strength prediction
    Hoang, Huong-Giang Thi
    Nguyen, Thuy-Anh
    Ly, Hai-Bang
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (01)
  • [2] CSG compressive strength prediction based on LSTM and interpretable machine learning
    Tian, Qingqing
    Gao, Hang
    Guo, Lei
    Li, Zexuan
    Wang, Qiongyao
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2023, 62 (01)
  • [3] Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete
    Zhang, Wei-Qi
    Wang, Hui-Ming
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (05): : 738 - 744
  • [4] Prediction of the Compressive Strength of Rubberized Concrete Based on Machine Learning Algorithm
    Hai-Bang Ly
    CIGOS 2021, EMERGING TECHNOLOGIES AND APPLICATIONS FOR GREEN INFRASTRUCTURE, 2022, 203 : 1907 - 1915
  • [5] Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
    石玉琼
    LI Jingyi
    ZHANG Yang
    李黎
    Journal of Wuhan University of Technology(Materials Science), 2025, 40 (01) : 65 - 78
  • [6] Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
    Shi Yuqiong
    Li Jingyi
    Zhang Yang
    Li Li
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2025, 40 (01): : 65 - 78
  • [7] MACHINE LEARNING BASED PREDICTION OF COMPRESSIVE STRENGTH IN CONCRETE INCORPORATING SYNHTHETIC FIBERS
    Erdem, R. Tugrul
    Ciftcioglu, Aybike Ozyuksel
    Gucuyen, Engin
    Kantar, Erkan
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2024, 54 (02): : 131 - 139
  • [8] Experimental study and machine learning based prediction of the compressive strength of geopolymer concrete
    Tran, Ngoc Thanh
    Nguyen, Duy Hung
    Tran, Quang Thanh
    Le, Huy Viet
    Nguyen, Duy-Liem
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (13) : 723 - 737
  • [9] Machine Learning Modelling for Compressive Strength Prediction of Superplasticizer-Based Concrete
    Sadegh-Zadeh, Seyed-Ali
    Dastmard, Arman
    Kafshgarkolaei, Leili Montazeri
    Movahedi, Sajad
    Ghidary, Saeed Shiry
    Najafi, Amirreza
    Saadat, Mozafar
    INFRASTRUCTURES, 2023, 8 (02)
  • [10] Machine Learning Technique for the Prediction of Blended Concrete Compressive Strength
    Jubori, Dawood S. A.
    Nabilah, Abu B.
    Safiee, Nor A.
    Alias, Aidi H.
    Nasir, Noor A. M.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (02) : 817 - 835