100 Gbps Indoor Access and 4.8 Gbps Outdoor Point-to-Point LiFi Transmission Systems Using Laser-Based Light Sources

被引:3
作者
Chen, Cheng [1 ]
Das, Sovan [2 ]
Videv, Stefan [1 ]
Sparks, Adrian [1 ]
Babadi, Sina [1 ]
Krishnamoorthy, Aravindh [3 ]
Lee, Changmin [2 ]
Grieder, Daniel [2 ]
Hartnett, Kathleen [2 ]
Rudy, Paul [2 ]
Raring, James [2 ]
Najafi, Marzieh [3 ]
Papanikolaou, Vasilis K. [3 ]
Schober, Robert [3 ]
Haas, Harald [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Kyocera SLD Laser Inc, Goleta, CA 93117 USA
[3] Friedrich Alexander Univ Erlangen Nurnberg, Inst Digital Commun, D-91054 Erlangen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Light fidelity; Millimeter wave communication; Wireless communication; Lighting; Wavelength division multiplexing; Optical signal processing; Optical sensors; Laser diode; light-fidelity; optical wireless communication; surface mounting device; wavelength division multiplexing; WIRELESS; MODULATION;
D O I
10.1109/JLT.2024.3400192
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we demonstrate the communication capabilities of light-fidelity (LiFi) systems based on high-brightness and high-bandwidth integrated laser-based sources in a surface mount device (SMD) packaging platform. The laser-based source is able to deliver 450 lumens of white light illumination and the resultant light brightness is over $\bf{{1000}\,cd/mm<^>{2}}$. It is demonstrated that a wavelength division multiplexing (WDM) LiFi system with ten parallel channels is able to deliver over 100 Gbps data rate with the assistance of Volterra filter-based nonlinear equalisers. In addition, an aggregated transmission data rate of 4.8 Gbps has been achieved over a link distance of 500 m with the same type of SMD light source. This work demonstrates the scalability of LiFi systems that employ laser-based light sources, particularly in their capacity to enable high-speed short range, as well as long-range data transmission.
引用
收藏
页码:4146 / 4157
页数:12
相关论文
共 37 条
[11]   What is LiFi? [J].
Haas, Harald ;
Yin, Liang ;
Wang, Yunlu ;
Chen, Cheng .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (06) :1533-1544
[12]  
Hanna K., 2023, Business wire, Jan
[13]  
Hughes-Hartogs D., 1987, U.S. Patent, Patent No. 4679227
[14]   Optical disk recording using a GaN blue-violet laser diode [J].
Ichimura, I ;
Maeda, F ;
Osato, K ;
Yamamoto, K ;
Kasami, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (2B) :937-942
[15]   Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication [J].
Janjua, Bilal ;
Oubei, Hassan M. ;
Retamal, Jose R. Duran ;
Ng, Tien Khee ;
Tsai, Cheng-Ting ;
Wang, Huai-Yung ;
Chi, Yu-Chieh ;
Kuo, Hao-Chung ;
Lin, Gong-Ru ;
He, Jr-Hau ;
Ooi, Boon S. .
OPTICS EXPRESS, 2015, 23 (14) :18746-18753
[16]   LED Based Indoor Visible Light Communications: State of the Art [J].
Karunatilaka, Dilukshan ;
Zafar, Fahad ;
Kalavally, Vineetha ;
Parthiban, Rajendran .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (03) :1649-1678
[17]  
Kaushal H, 2017, OPT NETW, P1, DOI 10.1007/978-81-322-3691-7
[18]   High Power Eye-Safe Optical Wireless Gigabit Link Employing a Freeform Multipath Lens [J].
Kirrbach, Rene ;
Faulwasser, Michael ;
Stephan, Mira ;
Schneider, Tobias ;
Deicke, Frank .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (06) :1343-1347
[19]   26 Gbit/s LiFi System With Laser-Based White Light Transmitter [J].
Lee, Changmin ;
Islim, Mohamed Sufyan ;
Das, Sovan ;
Spark, Adrian ;
Videv, Stefan ;
Rudy, Paul ;
Shah, Binith ;
McLaurin, Melvin ;
Haas, Harald ;
Raring, James .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (05) :1432-1439
[20]   Dynamic characteristics of 410 nm semipolar (20(2)over-bar(1)over-bar) III-nitride laser diodes with a modulation bandwidth of over 5 GHz [J].
Lee, Changmin ;
Zhang, Chong ;
Becerra, Daniel L. ;
Lee, Seunggeun ;
Forman, Charles A. ;
Oh, Sang Ho ;
Farrell, Robert M. ;
Speck, James S. ;
Nakamura, Shuji ;
Bowers, John E. ;
DenBaars, Steven P. .
APPLIED PHYSICS LETTERS, 2016, 109 (10) :27-31