A Cauchy Harish-Chandra integral for a dual pair over a p-adic field, the definition and a conjecture

被引:0
作者
Loke, Hung Yean [1 ]
Przebinda, Tomasz [2 ]
机构
[1] Natl Univ Singapore, Sci Dr 2, Singapore 117543, Singapore
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Howe's correspondence; Reductive dual pairs over non; Archimedean local fields; Characters; REPRESENTATIONS; CLASSIFICATION; DISTRIBUTIONS;
D O I
10.1016/j.jfa.2024.110540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a real irreducible dual pair there is an integral kernel operator which maps the distribution character of an irreducible admissible representation of the group with the smaller or equal rank to an invariant eigendistribution on the group with the larger or equal rank. The purpose of this article is to transfer this construction to the p-adic case. We provide the precise definition of the integral kernel operator and formulate a conjecture. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:66
相关论文
共 38 条
[1]  
[Anonymous], 1961, J. Math. Soc. Jpn, DOI DOI 10.2969/JMSJ/01340387
[2]   A reverse engineering approach to the Weil representation [J].
Aubert, Anne-Marie ;
Przebinda, Tomasz .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10) :1500-1585
[3]   The Cauchy Harish-Chandra Integral and the Invariant Eigendistributions [J].
Bernon, Florent ;
Przebinda, Tomasz .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (14) :3818-3862
[4]  
Bernon F, 2011, J LIE THEORY, V21, P499
[5]  
Bernon F, 2011, J LIE THEORY, V21, P615
[6]  
BERNSTEIN JN, 1984, LECT NOTES MATH, V1041, P50
[7]   Distributions and wave front sets in the uniform non-archimedean setting [J].
Cluckers, Raf ;
Halupczok, Immanuel ;
Loeser, Francois ;
Raibaut, Michel .
TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 5 (01) :97-131
[8]  
Collingwood D., 1993, Nilpotent Orbits in Complex Semisimple Lie Algebras
[9]  
DeBacker S., 1999, Admissible Invariant Distributions on Reductive p-Adic Groups
[10]  
Gelfand I.M., 1990, Representation Theory and Automorphic Functions, Generalized Functions, V6