Preoperative Prediction of Postoperative Infections Using Machine Learning and Electronic Health Record Data

被引:3
作者
Zhuang, Yaxu [1 ,2 ]
Dyas, Adam [1 ,3 ]
Meguid, Robert A. [1 ,3 ,4 ]
Henderson, William G. [1 ]
Bronsert, Michael [1 ,4 ]
Madsen, Helen [1 ,3 ]
Colborn, Kathryn L. [1 ,2 ,3 ,4 ]
机构
[1] Univ Colorado Anschutz Med Campus, Dept Surg, Surg Outcomes & Appl Res Program, Aurora, CO 80045 USA
[2] Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
[3] Univ Colorado Anschutz Med Campus, Sch Med, Dept Surg, Aurora, CO 80045 USA
[4] Univ Colorado Anschutz Med Campus, Adult & Child Consortium Hlth Outcomes Res & Deli, Aurora, CO 80045 USA
基金
美国医疗保健研究与质量局;
关键词
machine learning; postoperative infection; preoperative risk; ASSESSMENT SYSTEM SURPAS; SURGICAL-WOUND CLASSIFICATION; URINARY-TRACT-INFECTION; SURVEILLANCE; COMPLICATIONS; MODELS; MISCLASSIFICATION; IDENTIFICATION; VALIDATION; VARIABLES;
D O I
10.1097/SLA.0000000000006106
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective:To estimate preoperative risk of postoperative infections using structured electronic health record (EHR) data. Background:Surveillance and reporting of postoperative infections is primarily done through costly, labor-intensive manual chart reviews on a small sample of patients. Automated methods using statistical models applied to postoperative EHR data have shown promise to augment manual review as they can cover all operations in a timely manner. However, there are no specific models for risk-adjusting infectious complication rates using EHR data. Methods:Preoperative EHR data from 30,639 patients (2013-2019) were linked to the American College of Surgeons National Surgical Quality Improvement Program preoperative data and postoperative infection outcomes data from 5 hospitals in the University of Colorado Health System. EHR data included diagnoses, procedures, operative variables, patient characteristics, and medications. Lasso and the knockoff filter were used to perform controlled variable selection. Outcomes included surgical site infection, urinary tract infection, sepsis/septic shock, and pneumonia up to 30 days postoperatively. Results:Among >15,000 candidate predictors, 7 were chosen for the surgical site infection model and 6 for each of the urinary tract infection, sepsis, and pneumonia models. Important variables included preoperative presence of the specific outcome, wound classification, comorbidities, and American Society of Anesthesiologists physical status classification. The area under the receiver operating characteristic curve for each model ranged from 0.73 to 0.89. Conclusions:Parsimonious preoperative models for predicting postoperative infection risk using EHR data were developed and showed comparable performance to existing American College of Surgeons National Surgical Quality Improvement Program risk models that use manual chart review. These models can be used to estimate risk-adjusted postoperative infection rates applied to large volumes of EHR data in a timely manner.
引用
收藏
页码:720 / 726
页数:7
相关论文
共 50 条
  • [31] Machine learning-based risk prediction model for canine myxomatous mitral valve disease using electronic health record data
    Kim, Yunji
    Kim, Jaejin
    Kim, Sehoon
    Youn, Hwayoung
    Choi, Jihye
    Seo, Kyoungwon
    FRONTIERS IN VETERINARY SCIENCE, 2023, 10
  • [32] Applications of Machine Learning on Electronic Health Record Data to Combat Antibiotic Resistance
    Blechman, Samuel E.
    Wright, Erik S.
    JOURNAL OF INFECTIOUS DISEASES, 2024, 230 (05) : 1073 - 1082
  • [33] Improved Cardiovascular Risk Prediction Using Nonparametric Regression and Electronic Health Record Data
    Kennedy, Edward H.
    Wiitala, Wyndy L.
    Hayward, Rodney A.
    Sussman, Jeremy B.
    MEDICAL CARE, 2013, 51 (03) : 251 - 258
  • [34] Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
    David Nickson
    Caroline Meyer
    Lukasz Walasek
    Carla Toro
    BMC Medical Informatics and Decision Making, 23
  • [35] Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data
    Patel, Jay S. S.
    Su, Chang
    Tellez, Marisol
    Albandar, Jasim M. M.
    Rao, Rishi
    Iyer, Vishnu
    Shi, Evan
    Wu, Huanmei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [36] Relational machine learning for electronic health record-driven phenotyping
    Peissig, Peggy L.
    Costa, Vitor Santos
    Caldwell, Michael D.
    Rottscheit, Carla
    Berg, Richard L.
    Mendonca, Eneida A.
    Page, David
    JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 52 : 260 - 270
  • [37] Machine learning applied to electronic health record data in home healthcare: A scoping review
    Hobensack, Mollie
    Song, Jiyoun
    Scharp, Danielle
    Bowles, Kathryn H.
    Topaz, Maxim
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 170
  • [38] Replication of Real-World Evidence in Oncology Using Electronic Health Record Data Extracted by Machine Learning
    Benedum, Corey M.
    Sondhi, Arjun
    Fidyk, Erin
    Cohen, Aaron B.
    Nemeth, Sheila
    Adamson, Blythe
    Estevez, Melissa
    Bozkurt, Selen
    CANCERS, 2023, 15 (06)
  • [39] A machine learning model to predict therapeutic inertia in type 2 diabetes using electronic health record data
    Mcdaniel, C. C.
    Lo-Ciganic, W. -h.
    Huang, J.
    Chou, C.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2024, 47 (06) : 1419 - 1433
  • [40] Predictive Modeling Using Artificial Intelligence and Machine Learning Algorithms on Electronic Health Record Data Advantages and Challenges
    Patton, Michael J.
    Liu, Vincent X.
    CRITICAL CARE CLINICS, 2023, 39 (04) : 647 - 673