The primary objective of this research is to develop a sophisticated system capable of accurately predicting the 3-D trajectory of a ball in sports and conducting an in-depth analysis of the obtained trajectory. The proposed system comprises three key components: a binocular vision system, an unscented Kalman filter trajectory and velocity prediction system, and an algorithmic data analysis system. The binocular vision system uses two fixed cameras to record the ball's movement. This system is a valuable resource for professional table tennis athletes and coaches, providing precise data for comprehensive sports analysis. In contrast to other studies, this research introduces a cost-effective and highly convenient 3-D trajectory analysis system for table tennis. The system achieves sufficient accuracy using only two low-resolution, low-frame-rate devices and a simple calibration process. Compared to traditional binocular image triangulation, the proposed system improves accuracy by 25%, with an error margin reduced to only 86 mm.