Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM

被引:2
|
作者
Lu, Shuai [1 ,2 ]
Bao, Taotao [1 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang 471023, Peoples R China
[2] Shenzhen Huamod Energy Technol Co Ltd, Shenzhen 518000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Load modeling; Predictive models; Data models; Convolutional neural networks; Load forecasting; Long short term memory; Forecasting; Least squares approximations; Convolutional neural network; hybrid model; least squares method; long short-term memory network; neuralprophet; short-term load forecasting;
D O I
10.1109/ACCESS.2024.3407094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For distribution networks, accurate short-term load forecasting is a prerequisite for the safe and stable operation as well as economically optimized dispatching of the grid. In order to enhance the accuracy of short-term power load forecasting, this paper proposes a forecasting method that combines convolutional neural network (CNN), long short-term memory (LSTM) network, and the Neuralprophet model. This method utilizes the Neuralprophet model to capture trends, seasonal cycles, holiday activities, and other components within load data, while leveraging the data feature extraction capability of the CNN model and the long-term sequence prediction ability of the LSTM model. The optimal hyperparameters of the models are determined using the Bayesian optimization algorithm, and the predictions of the two models are fused through the least squares method. Application of this method to forecasting on various load datasets demonstrates its superior prediction accuracy compared to other classical models.
引用
收藏
页码:76870 / 76879
页数:10
相关论文
共 50 条
  • [21] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [22] Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
    Zang, Haixiang
    Liu, Ling
    Sun, Li
    Cheng, Lilin
    Wei, Zhinong
    Sun, Guoqiang
    RENEWABLE ENERGY, 2020, 160 : 26 - 41
  • [23] Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Jang, Seung-Ju
    Jang, Seung-Yup
    JOURNAL OF THE KOREAN GEOSYNTHETIC SOCIETY, 2022, 21 (02): : 11 - 19
  • [24] A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price
    Guo, Xifeng
    Zhao, Qiannan
    Zheng, Di
    Ning, Yi
    Gao, Ye
    ENERGY REPORTS, 2020, 6 : 1046 - 1053
  • [25] Performance comparison of single and ensemble CNN, LSTM and traditional ANN models for short-term electricity load forecasting
    Kathirgamanathan, Arurun
    Patel, Afzal
    Khwaja, Ahmed S.
    Venkatesh, Bala
    Anpalagan, Alagan
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (05): : 550 - 565
  • [26] Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM
    Liu Y.
    Zhao Q.
    Dianwang Jishu/Power System Technology, 2021, 45 (11): : 4444 - 4451
  • [27] A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
    Rafi, Shafiul Hasan
    Nahid-Al-Masood
    Deeba, Shohana Rahman
    Hossain, Eklas
    IEEE ACCESS, 2021, 9 : 32436 - 32448
  • [28] A Novel Sequence to Sequence based CNN-LSTM Model for Long Term Load Forecasting
    Rubasinghe, Osaka
    Zhang, Xinan
    Chau, Tat Kei
    Fernando, Tyrone
    Lu, Herbert Ho Ching
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [29] Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
    Ma L.
    Wang L.
    Zeng S.
    Zhao Y.
    Liu C.
    Zhang H.
    Wu Q.
    Ren H.
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (06): : 1473 - 1493
  • [30] A Novel NODE Approach Combined with LSTM for Short-Term Electricity Load Forecasting
    Huang, Songtao
    Shen, Jun
    Lv, Qingquan
    Zhou, Qingguo
    Yong, Binbin
    FUTURE INTERNET, 2023, 15 (01):