Graph ensemble neural network

被引:4
|
作者
Duan, Rui [1 ]
Yan, Chungang [2 ,3 ]
Wang, Junli [2 ,3 ]
Jiang, Changjun [2 ,3 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510000, Peoples R China
[2] Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai 201804, Peoples R China
[3] Tongji Univ, Natl Prov Minist Joint Collaborat Innovat Ctr Fina, Shanghai 201804, Peoples R China
关键词
Graph neural network; Data augmentation; Ensemble learning; Heterophily graphs;
D O I
10.1016/j.inffus.2024.102461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods have been shown to improve graph neural networks (GNNs). Existing ensemble methods on graphs determine a strong classifier by combining a set of trained base classifiers, i.e., combining the final outputs of base classifiers for prediction. However, these methods fail to promote many popular GNNs to perform well under heterophily (in graphs where many connected nodes have different class labels), which limits their applicability. Furthermore, they ignore the hierarchical nature of GNNs, which results in no interaction between base classifiers when neighbors are aggregated (during training). Two issues arise from this: low applicability and shallow ensemble . We propose Graph Ensemble Neural Network (GEN) for addressing above issues, which is not a simple ensemble of GNNs, but instead integrates ensemble into GNNs to fuse a set of graphs. GEN deepens single ensemble into multiple ensembles during training and applies to homophily and heterophily graphs. In GEN, we design structure augmentation to generate some graphs for training and design feature augmentation for attenuating errors brought by the initial features. Different from existing graph ensemble methods that execute only one ensemble, GEN executes multiple deep ensembles throughout the neighbor aggregation to fuse multiple graphs generated by structure augmentation. Extensive experiments show that GEN achieves new state-of-the-art performance on homophily and heterophily graphs for the semi- and full -supervised node classification. The source code of GEN is publicly available at https://github.com/graphNN/GEN1.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Decoupled semantic graph neural network for knowledge graph embedding
    Li, Zhifei
    Huang, Wei
    Gong, Xuchao
    Luo, Xiangyu
    Xiao, Kui
    Deng, Honglian
    Zhang, Miao
    Zhang, Yan
    NEUROCOMPUTING, 2025, 611
  • [22] Gene regulatory network inference based on causal discovery integrating with graph neural network
    Feng, Ke
    Jiang, Hongyang
    Yin, Chaoyi
    Sun, Huiyan
    QUANTITATIVE BIOLOGY, 2023, 11 (04) : 434 - 450
  • [23] Power System Network Topology Identification Based on Knowledge Graph and Graph Neural Network
    Wang, Changgang
    An, Jun
    Mu, Gang
    FRONTIERS IN ENERGY RESEARCH, 2021, 8
  • [24] Ensemble graph neural network model for classification of major depressive disorder using whole-brain functional connectivity
    Venkatapathy, Sujitha
    Votinov, Mikhail
    Wagels, Lisa
    Kim, Sangyun
    Lee, Munseob
    Habel, Ute
    Ra, In-Ho
    Jo, Han-Gue
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [25] Graph partitioning and graph neural network based hierarchical graph matching for graph similarity computation
    Xu, Haoyan
    Duan, Ziheng
    Wang, Yueyang
    Feng, Jie
    Chen, Runjian
    Zhang, Qianru
    Xu, Zhongbin
    NEUROCOMPUTING, 2021, 439 : 348 - 362
  • [26] Quality Assessment of Protein Docking Models Based on Graph Neural Network
    Han, Ye
    He, Fei
    Chen, Yongbing
    Qin, Wenyuan
    Yu, Helong
    Xu, Dong
    FRONTIERS IN BIOINFORMATICS, 2021, 1
  • [27] SynerGNet: A Graph Neural Network Model to Predict Anticancer Drug Synergy
    Liu, Mengmeng
    Srivastava, Gopal
    Ramanujam, J.
    Brylinski, Michal
    BIOMOLECULES, 2024, 14 (03)
  • [28] Federated Social Recommendation with Graph Neural Network
    Liu, Zhiwei
    Yang, Liangwei
    Fan, Ziwei
    Peng, Hao
    Yu, Philip S.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [29] Graph Neural Network for Merger and Acquisition Prediction
    Li, Yinfei
    Shou, Jiafeng
    Treleaven, Philip
    Wang, Jun
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [30] Heterogeneous Graph Neural Network with Distance Encoding
    Ji, Houye
    Yang, Cheng
    Shi, Chuan
    Li, Pan
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1138 - 1143