Graph ensemble neural network

被引:4
|
作者
Duan, Rui [1 ]
Yan, Chungang [2 ,3 ]
Wang, Junli [2 ,3 ]
Jiang, Changjun [2 ,3 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510000, Peoples R China
[2] Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai 201804, Peoples R China
[3] Tongji Univ, Natl Prov Minist Joint Collaborat Innovat Ctr Fina, Shanghai 201804, Peoples R China
关键词
Graph neural network; Data augmentation; Ensemble learning; Heterophily graphs;
D O I
10.1016/j.inffus.2024.102461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods have been shown to improve graph neural networks (GNNs). Existing ensemble methods on graphs determine a strong classifier by combining a set of trained base classifiers, i.e., combining the final outputs of base classifiers for prediction. However, these methods fail to promote many popular GNNs to perform well under heterophily (in graphs where many connected nodes have different class labels), which limits their applicability. Furthermore, they ignore the hierarchical nature of GNNs, which results in no interaction between base classifiers when neighbors are aggregated (during training). Two issues arise from this: low applicability and shallow ensemble . We propose Graph Ensemble Neural Network (GEN) for addressing above issues, which is not a simple ensemble of GNNs, but instead integrates ensemble into GNNs to fuse a set of graphs. GEN deepens single ensemble into multiple ensembles during training and applies to homophily and heterophily graphs. In GEN, we design structure augmentation to generate some graphs for training and design feature augmentation for attenuating errors brought by the initial features. Different from existing graph ensemble methods that execute only one ensemble, GEN executes multiple deep ensembles throughout the neighbor aggregation to fuse multiple graphs generated by structure augmentation. Extensive experiments show that GEN achieves new state-of-the-art performance on homophily and heterophily graphs for the semi- and full -supervised node classification. The source code of GEN is publicly available at https://github.com/graphNN/GEN1.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ensemble Quadratic Assignment Network for Graph Matching
    Tan, Haoru
    Wang, Chuang
    Wu, Sitong
    Zhang, Xu-Yao
    Yin, Fei
    Liu, Cheng-Lin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (09) : 3633 - 3655
  • [2] SStackGNN: Graph Data Augmentation Simplified Stacking Graph Neural Network for Twitter Bot Detection
    Shi, Shuhao
    Chen, Jian
    Wang, Zhengyan
    Zhang, Yuxin
    Zhang, Yongmao
    Fu, Chengqi
    Qiao, Kai
    Yan, Bin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [3] FTG-Net-E: A hierarchical ensemble graph neural network for DDoS attack detection
    Bakar, Rana Abu
    Marinis, Lorenzo De
    Cugini, Filippo
    Paolucci, Francesco
    COMPUTER NETWORKS, 2024, 250
  • [4] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541
  • [5] Survey on Graph Neural Network
    Ma S.
    Liu J.
    Zuo X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (01): : 47 - 80
  • [6] Binarized graph neural network
    Hanchen Wang
    Defu Lian
    Ying Zhang
    Lu Qin
    Xiangjian He
    Yiguang Lin
    Xuemin Lin
    World Wide Web, 2021, 24 : 825 - 848
  • [7] Binarized graph neural network
    Wang, Hanchen
    Lian, Defu
    Zhang, Ying
    Qin, Lu
    He, Xiangjian
    Lin, Yiguang
    Lin, Xuemin
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (03): : 825 - 848
  • [8] Robust Graph Neural Networks via Ensemble Learning
    Lin, Qi
    Yu, Shuo
    Sun, Ke
    Zhao, Wenhong
    Alfarraj, Osama
    Tolba, Amr
    Xia, Feng
    MATHEMATICS, 2022, 10 (08)
  • [9] ConvsPPIS: Identifying Protein-protein Interaction Sites by an Ensemble Convolutional Neural Network with Feature Graph
    Zhu, Huaixu
    Du, Xiuquan
    Yao, Yu
    CURRENT BIOINFORMATICS, 2020, 15 (04) : 368 - 378
  • [10] Towards real-time diagnosis for pediatric sepsis using graph neural network and ensemble methods
    Chen, X.
    Zhang, R.
    Tang, X-Y
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (14) : 4693 - 4701