Observation of quantum nonlocality in Greenberger-Horne-Zeilinger entanglement on a silicon

被引:0
|
作者
Chen, Leizhen [1 ]
Wu, Bochi [1 ]
Lu, Liangliang [2 ]
Wang, Kai [1 ]
Lu, Yanqing [1 ]
Zhu, Shining [1 ]
Ma, Xiao-Song [1 ,3 ,4 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Collaborat Innovat Ctr Adv Microstruct, Sch Phys,Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Phys Sci & Technol, Key Lab Optoelect Technol Jiangsu Prov, Nanjing 210023, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Anhui, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 09期
关键词
BELL INEQUALITIES; VIOLATION; PHOTONS;
D O I
10.1364/OE.515070
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlocality is the defining feature of quantum entanglement. Entangled states with multiple particles are of crucial importance in fundamental tests of quantum physics as well as in many quantum information tasks. One of the archetypal multipartite quantum states, Greenberger-Horne-Zeilinger (GHZ) state, allows one to observe the striking conflict of quantum physics to local realism in the so-called all -versus -nothing way. This is profoundly different from Bell's theorem for two particles, which relies on statistical predictions. Here, we demonstrate an integrated photonic chip capable of generating and manipulating the four -photon GHZ state. We perform a complete characterization of the four -photon GHZ state using quantum state tomography and obtain a state fidelity of 0.729 +/- 0.006. We further use the all -versus -nothing test and the Mermin inequalities to witness the quantum nonlocality of GHZ entanglement. Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.
引用
收藏
页码:14904 / 14913
页数:10
相关论文
共 50 条
  • [21] Greenberger-Horne-Zeilinger argument of nonlocality without inequalities for mixed states
    Ghirardi, GianCarlo
    Marinatto, Luca
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [22] Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State
    Shang-Ping Ding
    Lan Zhou
    Shi-Pu Gu
    Xing-Fu Wang
    Yu-Bo Sheng
    International Journal of Theoretical Physics, 2017, 56 : 1912 - 1928
  • [23] Classifying entanglement in the superposition of Greenberger-Horne-Zeilinger and W states
    Wang, Xuan
    Shi, Xian
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [24] Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits
    Wei, L. F.
    Liu, Yu-xi
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2006, 96 (24)
  • [25] Sewing Greenberger-Horne-Zeilinger states with a quantum zipper
    Wang, Da-Wei
    FOUNDATIONS OF QUANTUM THEORY, 2019, 197 : 109 - 112
  • [26] Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement
    Jian-Wei Pan
    Dik Bouwmeester
    Matthew Daniell
    Harald Weinfurter
    Anton Zeilinger
    Nature, 2000, 403 : 515 - 519
  • [27] Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State
    Ding, Shang-Ping
    Zhou, Lan
    Gu, Shi-Pu
    Wang, Xing-Fu
    Sheng, Yu-Bo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1912 - 1928
  • [28] Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state
    Zhou, Lan
    Sheng, Yu-Bo
    ANNALS OF PHYSICS, 2017, 385 : 10 - 35
  • [29] Greenberger-Horne-Zeilinger states in a quantum dot molecule
    Sharma, Anand
    Hawrylak, Pawel
    PHYSICAL REVIEW B, 2011, 83 (12):
  • [30] Greenberger-Horne-Zeilinger states-based blind quantum computation with entanglement concentration
    Xiaoqian Zhang
    Jian Weng
    Wei Lu
    Xiaochun Li
    Weiqi Luo
    Xiaoqing Tan
    Scientific Reports, 7