Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry

被引:4
作者
Dufumier, Benoit [1 ,2 ]
Gori, Pietro [2 ]
Petiton, Sara [1 ]
Louiset, Robin [1 ,2 ]
Mangin, Jean-Francois [1 ]
Grigis, Antoine [1 ]
Duchesnay, Edouard [1 ]
机构
[1] Univ Paris Saclay, NeuroSpin, CEA, CNRS,UMR 9027 Baobab, Saclay, France
[2] IPParis, LTCI, Telecom Paris, Palaiseau, France
基金
欧盟地平线“2020”;
关键词
Deep learning; Machine learning; Anatomical neuroimaging; Individual subject prediction; Psychiatric disorders; BRAIN AGE; NETWORK; LIFE; SCHIZOPHRENIA; REGISTRATION; INDIVIDUALS; DISEASE; BIAS;
D O I
10.1016/j.neuroimage.2024.120665
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The perspective of personalized medicine for brain disorders requires efficient learning models for anatomical neuroimaging-based prediction of clinical conditions. There is now a consensus on the benefit of deep learning (DL) in addressing many medical imaging tasks, such as image segmentation. However, for single -subject prediction problems, recent studies yielded contradictory results when comparing DL with Standard Machine Learning (SML) on top of classical feature extraction. Most existing comparative studies were limited in predicting phenotypes of little clinical interest, such as sex and age, and using a single dataset. Moreover, they conducted a limited analysis of the employed image pre-processing and feature selection strategies. This paper extensively compares DL and SML prediction capacity on five multi -site problems, including three increasingly complex clinical applications in psychiatry namely schizophrenia, bipolar disorder, and Autism Spectrum Disorder (ASD) diagnosis. To compensate for the relative scarcity of neuroimaging data on these clinical datasets, we also evaluate three pre -training strategies for transfer learning from brain imaging of the general healthy population: self -supervised learning, generative modeling and supervised learning with age. Overall, we find similar performance between randomly initialized DL and SML for the three clinical tasks and a similar scaling trend for sex prediction. This was replicated on an external dataset. We also show highly correlated discriminative brain regions between DL and linear ML models in all problems. Nonetheless, we demonstrate that self -supervised pre -training on large-scale healthy population imaging datasets ( N approximate to 10k), along with Deep Ensemble, allows DL to learn robust and transferable representations to smaller -scale clinical datasets ( N <= 1 k). It largely outperforms SML on 2 out of 3 clinical tasks both in internal and external test sets. These findings suggest that the improvement of DL over SML in anatomical neuroimaging mainly comes from its capacity to learn meaningful and useful abstract representations of the brain anatomy, and it sheds light on the potential of transfer learning for personalized medicine in psychiatry
引用
收藏
页数:18
相关论文
共 124 条
[91]   Classification Accuracy of Neuroimaging Biomarkers in Attention-Deficit/Hyperactivity Disorder: Effects of Sample Size and Circular Analysis [J].
Pulini, Alfredo A. ;
Kerr, Wesley T. ;
Loo, Sandra K. ;
Lenartowicz, Agatha .
BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2019, 4 (02) :108-120
[92]   Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis [J].
Quaak, Mirjam ;
van de Mortel, Laurens ;
Thomas, Rajat Mani ;
van Wingen, Guido .
NEUROIMAGE-CLINICAL, 2021, 30
[93]   Increased power by harmonizing structural MRI site differences with the ComBat batch method in ENIGMA [J].
Radua, Joaquim ;
Vieta, Eduard ;
Shinohara, Russell ;
Kochunov, Peter ;
Quide, Yann ;
Green, Melissa J. ;
Weickert, Cynthia S. ;
Weickert, Thomas ;
Bruggemann, Jason ;
Kircher, Tilo ;
Nenadic, Igor ;
Cairns, Murray J. ;
Seal, Marc ;
Schall, Ulrich ;
Henskens, Frans ;
Fullerton, Janice M. ;
Mowry, Bryan ;
Pantelis, Christos ;
Lenroot, Rhoshel ;
Cropley, Vanessa ;
Loughland, Carmel ;
Scott, Rodney ;
Wolf, Daniel ;
Satterthwaite, Theodore D. ;
Tan, Yunlong ;
Sim, Kang ;
Piras, Fabrizio ;
Spalletta, Gianfranco ;
Banaj, Nerisa ;
Pomarol-Clotet, Edith ;
Solanes, Aleix ;
Albajes-Eizagirre, Anton ;
Canales-Rodriguez, Erick J. ;
Sarro, Salvador ;
Di Giorgio, Annabella ;
Bertolino, Alessandro ;
Staeblein, Michael ;
Oertel, Viola ;
Knoechel, Christian ;
Borgwardt, Stefan ;
du Plessis, Stefan ;
Yun, Je-Yeon ;
Kwon, Jun Soo ;
Dannlowski, Udo ;
Hahn, Tim ;
Grotegerd, Dominik ;
Alloza, Clara ;
Arango, Celso ;
Janssen, Joost ;
Diaz-Caneja, Covadonga .
NEUROIMAGE, 2020, 218
[94]  
Raghu M, 2019, ADV NEUR IN, V32
[95]   Automated anatomical labelling atlas 3 [J].
Rolls, Edmund T. ;
Huang, Chu-Chung ;
Lin, Ching-Po ;
Feng, Jianfeng ;
Joliot, Marc .
NEUROIMAGE, 2020, 206
[96]   Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis [J].
Salvador, Raymond ;
Radua, Joaquim ;
Canales-Rodriguez, Erick J. ;
Solanes, Aleix ;
Sarro, Salvador ;
Goikolea, Jose M. ;
Valiente, Alicia ;
Monte, Gemma C. ;
del Carmen Natividad, Maria ;
Guerrero-Pedraza, Amalia ;
Moro, Noemi ;
Fernandez-Corcuera, Paloma ;
Amann, Benedikt L. ;
Maristany, Teresa ;
Vieta, Eduard ;
McKenna, Peter J. ;
Pomarol-Clotet, Edith .
PLOS ONE, 2017, 12 (04)
[97]   Neurodevelopmental subtypes of bipolar disorder are related to cortical folding patterns: An international multicenter study [J].
Sarrazin, Samuel ;
Cachia, Arnaud ;
Hozer, Franz ;
McDonald, Colm ;
Emsell, Louise ;
Cannon, Dara M. ;
Wessa, Michele ;
Linke, Julia ;
Versace, Amelia ;
Hamdani, Nora ;
D'Albis, Marc-Antoine ;
Delavest, Marine ;
Phillips, Mary L. ;
Brambilla, Paolo ;
Bellani, Marcella ;
Polosan, Mircea ;
Favre, Pauline ;
Leboyer, Marion ;
Mangin, Jean-Francois ;
Houenou, Josselin .
BIPOLAR DISORDERS, 2018, 20 (08) :721-732
[98]   Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration [J].
Sasabayashi, Daiki ;
Takahashi, Tsutomu ;
Takayanagi, Yoichiro ;
Suzuki, Michio .
TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
[99]   Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters [J].
Schnack, Hugo G. ;
Kahn, Rene S. .
FRONTIERS IN PSYCHIATRY, 2016, 7
[100]  
Schulz MA, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-020-18037-z, 10.1038/s41467-020-18446-0]