PET/CT based transformer model for multi-outcome prediction in oropharyngeal cancer

被引:5
|
作者
Ma, Baoqiang [1 ,5 ]
Guo, Jiapan [1 ,2 ,3 ]
De Biase, Alessia [1 ,2 ]
van Dijk, Lisanne, V [1 ,4 ]
van Ooijen, Peter M. A. [1 ,2 ]
Langendijk, Johannes A. [1 ]
Both, Stefan [1 ]
Sijtsema, Nanna M. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands
[2] Data Sci Ctr Hlth DASH, Machine Learning Lab, Groningen, Netherlands
[3] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, Groningen, Netherlands
[4] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX USA
[5] Univ Med Ctr Groningen, Dept Radiat Oncol, POB 30001, NL-9700RB Groningen, Netherlands
关键词
Transformer; Outcome prediction; Oropharyngeal cancer; Deep learning; IMAGE-BIOMARKERS; SURVIVAL; NETWORK; HEAD;
D O I
10.1016/j.radonc.2024.110368
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: To optimize our previously proposed TransRP, a model integrating CNN (convolutional neural network) and ViT (Vision Transformer) designed for recurrence-free survival prediction in oropharyngeal cancer and to extend its application to the prediction of multiple clinical outcomes, including locoregional control (LRC), Distant metastasis-free survival (DMFS) and overall survival (OS). Materials and Methods: Data was collected from 400 patients (300 for training and 100 for testing) diagnosed with oropharyngeal squamous cell carcinoma (OPSCC) who underwent (chemo)radiotherapy at University Medical Center Groningen. Each patient's data comprised pre-treatment PET/CT scans, clinical parameters, and clinical outcome endpoints, namely LRC, DMFS and OS. The prediction performance of TransRP was compared with CNNs when inputting image data only. Additionally, three distinct methods (m1-3) of incorporating clinical predictors into TransRP training and one method (m4) that uses TransRP prediction as one parameter in a clinical Cox model were compared. Results: TransRP achieved higher test C-index values of 0.61, 0.84 and 0.70 than CNNs for LRC, DMFS and OS, respectively. Furthermore, when incorporating TransRP's prediction into a clinical Cox model (m4), a higher Cindex of 0.77 for OS was obtained. Compared with a clinical routine risk stratification model of OS, our model, using clinical variables, radiomics and TransRP prediction as predictors, achieved larger separations of survival curves between low, intermediate and high risk groups. Conclusion: TransRP outperformed CNN models for all endpoints. Combining clinical data and TransRP prediction in a Cox model achieved better OS prediction.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma
    Ma, Baoqiang
    Guo, Jiapan
    Zhai, Tian-Tian
    van der Schaaf, Arjen
    Steenbakkers, Roel J. H. M.
    van Dijk, Lisanne V.
    Both, Stefan
    Langendijk, Johannes A.
    Zhang, Weichuan
    Qiu, Bingjiang
    van Ooijen, Peter M. A.
    Sijtsema, Nanna M.
    MEDICAL PHYSICS, 2023, 50 (10) : 6190 - 6200
  • [2] PET and CT based DenseNet outperforms advanced deep learning models for outcome prediction of oropharyngeal cancer
    Ma, Baoqiang
    Guo, Jiapan
    van Dijk, Lisanne V.
    Langendijk, Johannes A.
    van Ooijen, Peter M. A.
    Both, Stefan
    Sijtsema, Nanna M.
    RADIOTHERAPY AND ONCOLOGY, 2025, 207
  • [3] Deep learning-based outcome prediction using PET/CT and automatically predicted probability maps of primary tumor in patients with oropharyngeal cancer
    De Biase, Alessia
    Ma, Baoqiang
    Guo, Jiapan
    van Dijk, Lisanne V.
    Langendijk, Johannes A.
    Both, Stefan
    van Ooijen, Peter M. A.
    Sijtsema, Nanna M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 244
  • [4] TransRP: Transformer-based PET/CT feature extraction incorporating clinical data for recurrence-free survival prediction in oropharyngeal cancer
    Ma, Baoqiang
    Guo, Jiapan
    van Dijk, Lisanne V.
    van Ooijen, Peter M. A.
    Both, Stefan
    Sijtsema, Nanna Maria
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1640 - 1654
  • [5] PET-CT DenseNet outperforms advanced DL models for outcome prediction of oropharyngeal cancer
    Ma, Baoqiang
    Guo, Jiapan
    van Dijk, Lisanne V.
    Langendijk, Johannes A.
    van Ooijen, Peter M. A.
    Both, Stefan
    Sijtsema, Nanna Maria
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4959 - S4962
  • [6] The prognostic value of pathologic lymph node imaging using deep learning-based outcome prediction in oropharyngeal cancer patients
    Ma, Baoqiang
    De Biase, Alessia
    Guo, Jiapan
    van Dijk, Lisanne V.
    Langendijk, Johannes A.
    Both, Stefan
    van Ooijen, Peter M. A.
    Sijtsema, Nanna M.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2025, 33
  • [7] Textural and Conventional Pretherapeutic [18F]FDG PET/CT Parameters for Survival Outcome Prediction in Stage III and IV Oropharyngeal Cancer Patients
    Palomino-Fernandez, David
    Milara, Eva
    Galiana, Alvaro
    Sanchez-Ortiz, Miguel
    Seiffert, Alexander P.
    Jimenez-Almonacid, Justino
    Gomez-Grande, Adolfo
    Ruiz-Solis, Sebastian
    Ruiz-Alonso, Ana
    Gomez, Enrique J.
    Tabuenca, Maria Jose
    Sanchez-Gonzalez, Patricia
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [8] A CT-based radiomics model for predicting feeding tube insertion in oropharyngeal cancer
    Chinnery, Tricia
    Lang, Pencilla
    Nichols, Anthony
    Mattonen, Sarah
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [9] Posttreatment surveillance PET/CT for HPV-associated oropharyngeal cancer
    Corpman, David W.
    Masroor, Farzad
    Carpenter, Diane M.
    Nayak, Sundeep
    Gurushanthaiah, Deepak
    Wang, Kevin H.
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2019, 41 (02): : 456 - 462
  • [10] Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients
    Lang, Daniel M.
    Peeken, Jan C.
    Combs, Stephanie E.
    Wilkens, Jan J.
    Bartzsch, Stefan
    CANCERS, 2021, 13 (04) : 1 - 11