Optical performance of a solar dish concentrator formed by the same size mirror located on parabolic frame

被引:0
|
作者
Yan, Jian [1 ]
Peng, YouDuo [1 ]
Xie, XinYi [1 ]
Zhou, Wei [1 ]
机构
[1] Hunan Univ Sci & Technol, Coll Mech Engn, Xiangtan 411201, Hunan, Peoples R China
关键词
Solar dish concentrator; Mirror surface; Flux distribution; Optical performance; UNIFORM FLUX DISTRIBUTION; CAVITY RECEIVER; OPTIMIZATION; COLLECTORS; ABSORBERS; SYSTEMS;
D O I
10.1016/j.solmat.2024.113042
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar dish concentrator with low cost and meeting the flux distribution is always pursued for the efficient utilization of concentrated solar energy. This paper investigates the optical performance of a solar dish concentrator formed by using a number of identical square mirror units arranged on a parabolic surface frame. The manufacturing of the mirror surface of this concentrator requires only one kind of mold, which has the significant advantage of low-cost manufacturing. Three common types of mirror units including the parabolic mirror (focal length fm), spherical mirror (radius Rm) and plane mirror are considered. The influence of key geometric parameters including the mirror width d (250-750 mm) and dimensionless parameters such as f1/D, fm/f1 and Rm/ f1 (f1 is the focal length of parabolic frame) on its optical performance indexes such as the focused spot size (i.e., intercept width w), average local concentrator ratio (LCR), peak LCR and flux uniformity is analyzed using raytracing method, and the correctness of optical model and concentrator optical function is verified by outdoor concentrating experiments. The results show that the concentrator composed of parabolic or spherical mirrors can easily obtain a small circular focusing spot with high LCR and the intercept width can be easily controlled within 200 mm, the peak LCR can reach 34457 (average LCR is 12898), and average LCR reaches 14794 (peak LCR is 29497) at the smallest spot with w = 38.4 mm, which can be a low-cost alternative to parabolic dish concentrator. The concentrator with plane mirrors are easier to obtain square focusing spots with excellent flux uniformity, w can be controlled from 180 to 380 mm and uniform LCR is between 100 and 1400, which is very suitable for concentrating photovoltaic field.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Experimental investigation on thermal performance of cavity receiver integrated with short-term thermal energy storage for a solar parabolic dish concentrator
    Thirunavukkarasu, V.
    Nair, Vivek U.
    Tiwar, Kunal
    Cheralathan, M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (01) : 741 - 752
  • [42] Experimental investigation on thermal performance of cavity receiver integrated with short-term thermal energy storage for a solar parabolic dish concentrator
    V. Thirunavukkarasu
    Vivek U. Nair
    Kunal Tiwari
    M. Cheralathan
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 741 - 752
  • [43] Influence of Position Errors in Marker Points on Visual Adjustment Accuracy of Mirror Pose in Solar Dish Concentrator
    Hu, Yaosong
    Yan, Jian
    Peng, Youduo
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (15)
  • [44] Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver
    Pavlovic, Sasa
    Daabo, Ahmed M.
    Bellos, Evangelos
    Stefanovic, Velimir
    Mahmoud, Saad
    Al-Dadah, Raya K.
    JOURNAL OF CLEANER PRODUCTION, 2017, 150 : 75 - 92
  • [45] Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver
    Maatallah, Taher
    Houcine, Ahlem
    Saeed, Farooq
    Khan, Sikandar
    Ali, Sajid
    SUSTAINABILITY, 2024, 16 (02)
  • [46] Optical modeling of corrugation cavity receiver for large-aperture solar parabolic dish collector
    Rajan, Abhinav
    Reddy, K. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 3330 - 3348
  • [47] Design and optical performance analysis of novel large aperture parabolic trough solar collector with secondary concentrator
    Yao P.
    Lei D.
    Zhang X.
    Zhang B.
    Wang Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (08): : 245 - 252
  • [48] Optical and thermal investigation of hyperbolic cavity receiver with secondary reflector for solar parabolic dish collector
    Mandal, Pradipta
    Rajan, Abhinav
    Reddy, K. S.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 47
  • [49] A receiver geometrical details effect on a solar parabolic dish collector performance
    Cherif, Hiba
    Ghomrassi, Anissa
    Sghaier, Jalila
    Mhiri, Hatem
    Bournot, Philippe
    ENERGY REPORTS, 2019, 5 : 882 - 897
  • [50] Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough concentrator
    Indira, Sridhar Sripadmanabhan
    Vaithilingam, Chockalingam Aravind
    Narasingamurthi, Kulasekharan
    Sivasubramanian, Ramsundar
    Chong, Kok-Keong
    Saidur, R.
    APPLIED ENERGY, 2022, 320