Multimodal Proxy-Free Face Anti-Spoofing Exploiting Local Patch Features

被引:0
|
作者
Yu, Xiangyu [1 ]
Huang, Xinghua [1 ]
Ye, Xiaohui [1 ]
Liu, Beibei [1 ]
Hua, Guang [2 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[2] Singapore Inst Technol SIT, Infocomm Technol ICT Cluster, Singapore 138683, Singapore
关键词
Faces; Face recognition; Feature extraction; Protocols; Task analysis; Training; Printing; Face anti-spoofing; local spoof features; proxy-free pairwise similarity learning;
D O I
10.1109/LSP.2024.3418710
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Face anti-spoofing (FAS) is vital to ensure the security of the face recognition systems, for which the essential task is to capture the unique spoof face features. Most of the existing methods extract spoof features from the whole faces, overlooking clues in local face patches. Meanwhile, researchers usually use intermediate parameters as a proxy in face classification, but this requires the design of additional loss functions. To solve these problems, we propose a multimodal proxy-free FAS model which uses contrastive language image pre-training (CLIP) as the backbone. Specifically, we use patches cropped from the original face to augment the data, forcing the network to learn local spoof features, such as the edges of printing attacks. At the same time, we introduce dynamic central difference convolutional (DCDC) adapter to extract fine-grained features in patches. Furthermore, we propose to adopt a proxy-free pairwise similarity learning (PSL) loss to achieve the goal that the maximum intra-class distance is smaller than the minimum inter-class distance. Experiments on several benchmark datasets show that the proposed method achieves state-of-the-art performance.
引用
收藏
页码:1695 / 1699
页数:5
相关论文
共 50 条
  • [1] Consistency Regularization for Deep Face Anti-Spoofing
    Wang, Zezheng
    Yu, Zitong
    Wang, Xun
    Qin, Yunxiao
    Li, Jiahong
    Zhao, Chenxu
    Liu, Xin
    Lei, Zhen
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1127 - 1140
  • [2] Conv-MLP: A Convolution and MLP Mixed Model for Multimodal Face Anti-Spoofing
    Wang, Weihang
    Wen, Fei
    Zheng, Haoyuan
    Ying, Rendong
    Liu, Peilin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2284 - 2297
  • [3] Meta-Teacher For Face Anti-Spoofing
    Qin, Yunxiao
    Yu, Zitong
    Yan, Longbin
    Wang, Zezheng
    Zhao, Chenxu
    Lei, Zhen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6311 - 6326
  • [4] Polarized Image Translation From Nonpolarized Cameras for Multimodal Face Anti-Spoofing
    Tian, Yu
    Huang, Yalin
    Zhang, Kunbo
    Liu, Yue
    Sun, Zhenan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 5651 - 5664
  • [5] Spoof Trace Disentanglement for Generic Face Anti-Spoofing
    Liu, Yaojie
    Liu, Xiaoming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3813 - 3830
  • [6] Dual Consistency Regularization for Generalized Face Anti-Spoofing
    Liu, Yongluo
    Li, Zun
    Wu, Lifang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2171 - 2183
  • [7] From RGB to Depth: Domain Transfer Network for Face Anti-Spoofing
    Wang, Yahang
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiao-Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 4280 - 4290
  • [8] Multimodal contrastive learning for face anti-spoofing
    Deng, Pengchao
    Ge, Chenyang
    Wei, Hao
    Sun, Yuan
    Qiao, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [9] Deep Learning for Face Anti-Spoofing: A Survey
    Yu, Zitong
    Qin, Yunxiao
    Li, Xiaobai
    Zhao, Chenxu
    Lei, Zhen
    Zhao, Guoying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5609 - 5631
  • [10] Camera Invariant Feature Learning for Generalized Face Anti-Spoofing
    Chen, Baoliang
    Yang, Wenhan
    Li, Haoliang
    Wang, Shiqi
    Kwong, Sam
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 2477 - 2492