Long-time dynamics for the energy critical heat equation in R5

被引:2
作者
Li, Zaizheng [1 ]
Wei, Juncheng [2 ]
Zhang, Qidi [3 ]
Zhou, Yifu [4 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Energy critical heat equation; Long-time dynamics; Gluing method; HARMONIC MAP FLOW; ASYMPTOTIC-BEHAVIOR; THRESHOLD SOLUTIONS; PARABOLIC EQUATION; GLOBAL-SOLUTIONS; BLOW-UP; DECAY; SINGULARITY; THEOREMS;
D O I
10.1016/j.na.2024.113594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long-time behavior of global solutions to the energy critical heat equation in R-5 {partial derivative(t)u = Delta u + vertical bar u vertical bar(4/3)u in R(5)x(t(0),infinity), u(center dot, t(0)) = u(0) in R-5. For t(0) sufficiently large, we show the existence of positive solutions for a class of initial value u(0)(x) similar to vertical bar x vertical bar(-gamma) as vertical bar x vertical bar -> infinity with gamma > 3/2 such that the global solutions behave asymptotically parallel to u(center dot, t)parallel to(L infinity(R5)) similar to {t(-3(2-gamma)/2) if 3/2 < gamma < 2 (ln t)(-3) if gamma = 2 for t > t(0), 1 if gamma > 2 which is slower than the self-similar time decay t(-3/4). These rates are inspired by Fila and King (2012, Conjecture 1.1).
引用
收藏
页数:15
相关论文
共 50 条
[21]   IMPROVED UNIFORM ERROR BOUNDS ON TIME-SPLITTING METHODS FOR THE LONG-TIME DYNAMICS OF THE DIRAC EQUATION WITH SMALL POTENTIALS [J].
Bao, Weizhu ;
Feng, Yue ;
Yin, Jia .
MULTISCALE MODELING & SIMULATION, 2022, 20 (03) :1040-1062
[22]   Long-time dynamics of the Cahn-Hilliard equation with kinetic rate dependent dynamic boundary conditions [J].
Garcke, Harald ;
Knopf, Patrik ;
Yayla, Sema .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 215
[23]   Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly nonlinear Dirac equation [J].
Bao, Weizhu ;
Cai, Yongyong ;
Feng, Yue .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) :654-679
[24]   ON THE LONG-TIME LIMIT OF POSITIVE SOLUTIONS TO THE DEGENERATE LOGISTIC EQUATION [J].
Du, Yihong ;
Yamada, Yoshio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) :123-132
[25]   Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation [J].
J. A. Carrillo ;
G. Toscani .
Communications in Mathematical Physics, 2002, 225 :551-571
[26]   LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION [J].
Le Thi Thuy ;
Le Tran Tinh .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04) :1365-1388
[27]   Dynamics for the focusing, energy-critical nonlinear Hartree equation [J].
Miao, Changxing ;
Wu, Yifei ;
Xu, Guixiang .
FORUM MATHEMATICUM, 2015, 27 (01) :373-447
[28]   Long-time behaviour of classical solutions to the relativistic Euler equations with logarithmic equation of state [J].
Cheung, Ka Luen ;
Wong, Sen .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06)
[29]   Long-time convergence of a nonlocal Burgers' equation towards the local N-wave [J].
Coclite, Giuseppe Maria ;
De Nitti, Nicola ;
Keimer, Alexander ;
Pflug, Lukas ;
Zuazua, Enrique .
NONLINEARITY, 2023, 36 (11) :5998-6019
[30]   Long-time dynamics of a class of nonlocal extensible beams with time delay [J].
Meng, Fengjuan ;
Liu, Cuncai ;
Zhang, Chang .
MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (02) :319-333