Previous research on automatic control of high-speed trains in speed limit sections is insufficient. This article proposes a new offline reinforcement learning strategy for automatic tracking of autonomous trains. Firstly, the operating speed and deceleration starting point were determined for different speed limit scenarios. Then, a tracking controller based on the improved offline conservative Q-learning (CQL) algorithm was designed to avoid frequent interaction between the train and the environment. Selected an appropriate policy to implement the CQL algorithm. The data samples were reclassified to increase sample concentration. The value and strategy network structure was redesigned. The state space and action space of tracking trains were limited, and the dimension of state space was increased. A multi-objective reward function was designed to distinguish the tracking process of trains in different sections. The simulation results show that the proposed high-speed railway tracking interval automatic control algorithm is superior to traditional online reinforcement learning methods in terms of safety, comfort, and convergence efficiency.
机构:
Henan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Int Joint Res Lab Cooperat Vehicular Networks Hena, Zhengzhou 450046, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Zhang, Yanyu
Li, Pengpeng
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Li, Pengpeng
Zhang, Xibeng
论文数: 0引用数: 0
h-index: 0
机构:
Longzihu New Energy Lab, Zhengzhou 450000, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Zhang, Xibeng
Jiao, Feixiang
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Jiao, Feixiang
Wang, Benfei
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510000, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Wang, Benfei
Zhou, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R ChinaHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
Zhou, Yi
Ukil, Abhisek
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Elect Comp & Software Engn, Auckland 1010, New ZealandHenan Univ, Sch Artificial Intelligence, Zhengzhou 450000, Peoples R China
机构:
Univ Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
Faria, R. R.
Capron, B. D. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
Capron, B. D. O.
Secchi, A. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
Univ Fed Rio de Janeiro, Programa Engn Quim, PEQ COPPE, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
Secchi, A. R.
De Souza, M. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
Univ Fed Rio de Janeiro, Programa Engn Quim, PEQ COPPE, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Escola Quim, EPQB, BR-21941909 Rio de Janeiro, Brazil
机构:
South China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
Li, Jiawen
Qian, Tiantian
论文数: 0引用数: 0
h-index: 0
机构:
China Elect Power Res Inst Nanjing, Nanjing 210003, Peoples R ChinaSouth China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
Qian, Tiantian
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
机构:
Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R ChinaGuangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R China
Zeng, Shunqi
Huang, Chunyan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Benliu Power Technol Co Ltd, Guangzhou 201306, Peoples R ChinaGuangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R China
Huang, Chunyan
Wang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R ChinaGuangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R China
Wang, Fei
Li, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R ChinaGuangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R China
Li, Xin
Chen, Minghui
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R ChinaGuangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 201306, Peoples R China
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
Sun, Weijie
Zhao, Guangyue
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
Zhao, Guangyue
Peng, Yunjian
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China