EXISTENCE OF SOLUTIONS OF FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS VIA MEASURE OF NONCOMPACTNESS

被引:1
作者
Das, Anupam [1 ]
Hazarika, Bipan [2 ]
Abbas, Syed [3 ]
Nashine, Hemant kumar [4 ,5 ]
Deep, Amar [6 ]
机构
[1] Cotton Univ, Dept Math, Gauhati, India
[2] Gauhati Univ, Dept Math, Gauhati 781014, India
[3] Indian Inst Technol Mandi, Sch Math & Stat Sci, Mandi, India
[4] VIT Bhopal Univ, Sch Adv Sci & Languages, Math Div, Bhopal, India
[5] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
[6] IIMT Engn Coll Meerut, Dept Appl Sci, Meerut, India
关键词
measure of noncompactness; fractional hybrid differential equation; fixed point theorem;
D O I
10.1216/rmj.2024.54.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the help of a newly defined contraction operator, we establish a fixed point theorem and study the solvability of fractional hybrid differential equations in a Banach space. We provide examples to support our findings.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 24 条
[1]   On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function [J].
Abbas, Mohamed, I ;
Ragusa, Maria Alessandra .
SYMMETRY-BASEL, 2021, 13 (02) :1-16
[2]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[3]   Existence results for hybrid fractional differential equations with three-point boundary conditions [J].
Amara, Abdelkader .
AIMS MATHEMATICS, 2020, 5 (02) :1074-1088
[4]  
Ansari A. H., 2014, P 2 REGIONAL C MATH, P377, DOI DOI 10.2298/FIL1403635A
[5]  
Banas, 1980, LECT NOTES PURE APPL
[6]  
Chang S.S., 1996, J. Korean Math. Soc., V33, P575
[7]  
Darbo G., 1955, Rendiconti del Seminario Matematico della Universita di Padova, V24, P84
[8]   EXISTENCE OF SOLUTIONS FOR HYBRID FRACTIONAL PANTOGRAPH EQUATIONS [J].
Darwish, Mohamed Abdalla ;
Sadarangani, Kishin .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (01) :150-167
[9]   Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space [J].
Das, Anupam ;
Hazarika, Bipan ;
Deuri, Bhuban Chandra .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) :2113-2125
[10]   Some New Generalization of Darbo's Fixed Point Theorem and Its Application on Integral Equations [J].
Das, Anupam ;
Hazarika, Bipan ;
Kumam, Poom .
MATHEMATICS, 2019, 7 (03)