Deep learning-based 3D reconstruction from multiple images: A survey

被引:6
作者
Wang, Chuhua [1 ]
Reza, Md Alimoor [2 ]
Vats, Vibhas [1 ]
Ju, Yingnan [1 ]
Thakurdesai, Nikhil [1 ]
Wang, Yuchen [1 ]
Crandall, David J. [1 ]
Jung, Soon-heung [1 ,3 ]
Seo, Jeongil [4 ]
机构
[1] Indiana Univ, Luddy Sch Informat Comp & Engn, Bloomington, IN USA
[2] Drake Univ, Dept Math & Comp Sci, Des Moines, IA 50311 USA
[3] Elect & Telecommun Res Inst ETRI, Daejeon, South Korea
[4] Dong A Univ, Busan, South Korea
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
3d reconstruction; Survey; Deep learning; Computer vision; MARKOV RANDOM-FIELDS; SIMULTANEOUS LOCALIZATION; MULTIVIEW STEREO; DATABASE; SLAM;
D O I
10.1016/j.neucom.2024.128018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstructing the three-dimensional structure of a scene is a classic and fundamental problem in computer vision, but it has been revolutionized by recent advancements in deep machine learning. In this paper, we survey this rich and growing area. We divide the work into four main threads: 3D reconstruction from two calibrated images from a binocular camera; 3D reconstruction from more than two images taken by the same camera or more than two calibrated cameras; object -focused 3D reconstruction with relaxed camera calibration; and SLAM -based techniques. We summarize each approach along four salient dimensions: algorithmic and deep network characteristics, output representation, datasets, and quantitative comparisons among different methods. We also discuss key challenges and future directions.
引用
收藏
页数:23
相关论文
共 158 条
[61]   Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers [J].
Li, Zhaoshuo ;
Liu, Xingtong ;
Drenkow, Nathan ;
Ding, Andy ;
Creighton, Francis X. ;
Taylor, Russell H. ;
Unberath, Mathias .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6177-6186
[62]   Learning for Disparity Estimation through Feature Constancy [J].
Liang, Zhengfa ;
Feng, Yiliu ;
Guo, Yulan ;
Liu, Hengzhu ;
Chen, Wei ;
Qiao, Linbo ;
Zhou, Li ;
Zhang, Jianfeng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2811-2820
[63]   P-MVSNet: Learning Patch-wise Matching Confidence Aggregation for Multi-View Stereo [J].
Luo, Keyang ;
Guan, Tao ;
Ju, Lili ;
Huang, Haipeng ;
Luo, Yawei .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :10451-10460
[64]  
Luo Z., 2020, BR MACH VIS C BMVC
[65]   EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo [J].
Ma, Xinjun ;
Gong, Yue ;
Wang, Qirui ;
Huang, Jingwei ;
Chen, Lei ;
Yu, Fan .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5712-5720
[66]   Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints [J].
Mahjourian, Reza ;
Wicke, Martin ;
Angelova, Anelia .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5667-5675
[67]   CodeMapping: Real-Time Dense Mapping for Sparse SLAM using Compact Scene Representations [J].
Matsuki, Hidenobu ;
Scona, Raluca ;
Czarnowski, Jan ;
Davison, Andrew J. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :7105-7112
[68]   A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation [J].
Mayer, Nikolaus ;
Ilg, Eddy ;
Hausser, Philip ;
Fischer, Philipp ;
Cremers, Daniel ;
Dosovitskiy, Alexey ;
Brox, Thomas .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4040-4048
[69]   SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation? [J].
McCormac, John ;
Handa, Ankur ;
Leutenegger, Stefan ;
Davison, Andrew J. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2697-2706
[70]  
Menze M, 2015, PROC CVPR IEEE, P3061, DOI 10.1109/CVPR.2015.7298925