Deep learning-based 3D reconstruction from multiple images: A survey

被引:6
作者
Wang, Chuhua [1 ]
Reza, Md Alimoor [2 ]
Vats, Vibhas [1 ]
Ju, Yingnan [1 ]
Thakurdesai, Nikhil [1 ]
Wang, Yuchen [1 ]
Crandall, David J. [1 ]
Jung, Soon-heung [1 ,3 ]
Seo, Jeongil [4 ]
机构
[1] Indiana Univ, Luddy Sch Informat Comp & Engn, Bloomington, IN USA
[2] Drake Univ, Dept Math & Comp Sci, Des Moines, IA 50311 USA
[3] Elect & Telecommun Res Inst ETRI, Daejeon, South Korea
[4] Dong A Univ, Busan, South Korea
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
3d reconstruction; Survey; Deep learning; Computer vision; MARKOV RANDOM-FIELDS; SIMULTANEOUS LOCALIZATION; MULTIVIEW STEREO; DATABASE; SLAM;
D O I
10.1016/j.neucom.2024.128018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstructing the three-dimensional structure of a scene is a classic and fundamental problem in computer vision, but it has been revolutionized by recent advancements in deep machine learning. In this paper, we survey this rich and growing area. We divide the work into four main threads: 3D reconstruction from two calibrated images from a binocular camera; 3D reconstruction from more than two images taken by the same camera or more than two calibrated cameras; object -focused 3D reconstruction with relaxed camera calibration; and SLAM -based techniques. We summarize each approach along four salient dimensions: algorithmic and deep network characteristics, output representation, datasets, and quantitative comparisons among different methods. We also discuss key challenges and future directions.
引用
收藏
页数:23
相关论文
共 158 条
[1]   Large-Scale Data for Multiple-View Stereopsis [J].
Aanaes, Henrik ;
Jensen, Rasmus Ramsbol ;
Vogiatzis, George ;
Tola, Engin ;
Dahl, Anders Bjorholm .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 120 (02) :153-168
[2]   MonoScene: Monocular 3D Semantic Scene Completion [J].
Anh-Quan Cao ;
de Charette, Raoul .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :3981-3991
[3]   Simultaneous localization and mapping (SLAM): Part II [J].
Bailey, Tim ;
Durrant-Whyte, Hugh .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (03) :108-117
[4]   Learning Meshes for Dense Visual SLAM [J].
Bloesch, Michael ;
Laidlow, Tristan ;
Clark, Ronald ;
Leutenegger, Stefan ;
Davison, Andrew J. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :5854-5863
[5]   CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM [J].
Bloesch, Michael ;
Czarnowski, Jan ;
Clark, Ronald ;
Leutenegger, Stefan ;
Davison, Andrew J. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2560-2568
[6]   Markov random fields with efficient approximations [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, :648-655
[7]   The EuRoC micro aerial vehicle datasets [J].
Burri, Michael ;
Nikolic, Janosch ;
Gohl, Pascal ;
Schneider, Thomas ;
Rehder, Joern ;
Omari, Sammy ;
Achtelik, Markus W. ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) :1157-1163
[8]  
Casser V, 2019, AAAI CONF ARTIF INTE, P8001
[9]   Pyramid Stereo Matching Network [J].
Chang, Jia-Ren ;
Chen, Yong-Sheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5410-5418
[10]  
Chen R, 2019, Arxiv, DOI arXiv:1908.04422