Machine Learning Analysis of Human Skin by Optoacoustic Mesoscopy for Automated Extraction of Psoriasis and Aging Biomarkers

被引:3
|
作者
He, Hailong [1 ,2 ]
Paetzold, Johannes C. [3 ]
Boerner, Nils [4 ]
Riedel, Erik [1 ,2 ]
Gerl, Stefan [4 ]
Schneider, Simon [5 ]
Fisher, Chiara [1 ,2 ]
Ezhov, Ivan [4 ]
Shit, Suprosanna [4 ]
Li, Hongwei [4 ]
Ruckert, Daniel [3 ,6 ]
Aguirre, Juan [7 ,8 ]
Biedermann, Tilo [5 ]
Darsow, Ulf [5 ]
Menze, Bjoern [9 ]
Ntziachristos, Vasilis [1 ,10 ,11 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Biol & Med Imaging, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Chair Biol Imaging, Sch Med, D-81675 Munich, Germany
[3] Imperial Coll London, Dept Comp, London SW7 2RH, England
[4] Tech Univ Munich, Dept Comp Sci, D-81541 Munich, Germany
[5] Tech Univ Munich, Dept Dermatol & Allergy, D-80337 Munich, Germany
[6] Tech Univ Munich, Dept Comp Sci, D-81675 Munich, Germany
[7] Univ Autonoma Madrid, Dept Tecnol Elect & Comunicac, Madrid 28049, Spain
[8] Inst Invest Sanitaria Fdn Jimenez Diaz, Madrid 28015, Spain
[9] Univ Zurich, Dept Quant Biomed, CH-8006 Zurich, Switzerland
[10] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Chair Biol Imaging, Sch Med, D-81675 Munich, Germany
[11] Tech Univ Munich, Munich Inst Robot & Machine Intelligence MIRMI, D-80992 Munich, Germany
基金
欧盟地平线“2020”;
关键词
Skin; Image segmentation; Imaging; Feature extraction; Biomarkers; Morphology; Image reconstruction; Optoacoustic mesoscopy; photoacoustic; skin imaging; skin aging; segmentation; machine learning; OPTICAL COHERENCE TOMOGRAPHY; DIAGNOSIS;
D O I
10.1109/TMI.2024.3356180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
引用
收藏
页码:2074 / 2085
页数:12
相关论文
共 50 条
  • [1] Opening a window to skin biomarkers for diabetes stage with optoacoustic mesoscopy
    He, Hailong
    Fasoula, Nikolina-Alexia
    Karlas, Angelos
    Omar, Murad
    Aguirre, Juan
    Lutz, Jessica
    Kallmayer, Michael
    Fuechtenbusch, Martin
    Eckstein, Hans-Henning
    Ziegler, Annette
    Ntziachristos, Vasilis
    LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [2] Raster-scanning optoacoustic mesoscopy biomarkers for atopic dermatitis skin lesions
    Nau, T.
    Schoenmann, C.
    Hindelang, B.
    Riobo, L.
    Doll, A.
    Schneider, S.
    Englert, L.
    He, H.
    Biedermann, T.
    Darsow, U.
    Lauffer, F.
    Ntziachristos, V.
    Aguirre, J.
    PHOTOACOUSTICS, 2023, 31
  • [3] Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy
    Aguirre, Juan
    Schwarz, Mathias
    Garzorz, Natalie
    Omar, Murad
    Buehler, Andreas
    Eyerich, Kilian
    Ntziachristos, Vasilis
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (05):
  • [4] Fully automated identification of skin morphology in raster-scan optoacoustic mesoscopy using artificial intelligence
    Moustakidis, Serafeim
    Omar, Murad
    Aguirre, Juan
    Mohajerani, Pouyan
    Ntziachristos, Vasilis
    MEDICAL PHYSICS, 2019, 46 (09) : 4046 - 4056
  • [5] Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy
    Berezhnoi, Andrei
    Schwarz, Mathias
    Buehler, Andreas
    Ovsepian, Saak V.
    Aguirre, Juan
    Ntziachristos, Vasilis
    JOURNAL OF BIOPHOTONICS, 2018, 11 (11)
  • [6] Machine learning-based screening for biomarkers of psoriasis and immune cell infiltration
    Zhou, Yang
    Wang, Ziting
    Han, Lu
    Yu, Yixuan
    Guan, Ning
    Fang, Runan
    Wan, Yue
    Yang, Zeyu
    Li, Jianhong
    EUROPEAN JOURNAL OF DERMATOLOGY, 2023, 33 (02) : 147 - 156
  • [7] Machine learning-based screening for biomarkers of psoriasis and immune cell infiltration
    Yang Zhou
    Ziting Wang
    Lu Han
    Yixuan Yu
    Ning Guan
    Runan Fang
    Yue Wan
    Zeyu Yang
    Jianhong Li
    European Journal of Dermatology, 2023, 33 : 147 - 156
  • [8] Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis
    Park, Sojeong
    Saw, Shier Nee
    Li, Xiuting
    Paknezhad, Mahsa
    Coppola, Davide
    Dinish, U. S.
    Attia, Amalina Binite Ebrahim
    Yew, Yik Weng
    Thng, Steven Tien Guan
    Lee, Hwee Kuan
    Olivo, Malini
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (06) : 3671 - 3683
  • [9] A review of psoriasis image analysis based on machine learning
    Li, Huihui
    Chen, Guangjie
    Zhang, Li
    Xu, Chunlin
    Wen, Ju
    FRONTIERS IN MEDICINE, 2024, 11
  • [10] Integrated bioinformatics combined with machine learning to analyze shared biomarkers and pathways in psoriasis and cervical squamous cell carcinoma
    Liu, Luyu
    Yin, Pan
    Yang, Ruida
    Zhang, Guanfei
    Wu, Cong
    Zheng, Yan
    Wu, Shaobo
    Liu, Meng
    FRONTIERS IN IMMUNOLOGY, 2024, 15