Machine Learning Analysis of Human Skin by Optoacoustic Mesoscopy for Automated Extraction of Psoriasis and Aging Biomarkers

被引:4
作者
He, Hailong [1 ,2 ]
Paetzold, Johannes C. [3 ]
Boerner, Nils [4 ]
Riedel, Erik [1 ,2 ]
Gerl, Stefan [4 ]
Schneider, Simon [5 ]
Fisher, Chiara [1 ,2 ]
Ezhov, Ivan [4 ]
Shit, Suprosanna [4 ]
Li, Hongwei [4 ]
Ruckert, Daniel [3 ,6 ]
Aguirre, Juan [7 ,8 ]
Biedermann, Tilo [5 ]
Darsow, Ulf [5 ]
Menze, Bjoern [9 ]
Ntziachristos, Vasilis [1 ,10 ,11 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Biol & Med Imaging, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Chair Biol Imaging, Sch Med, D-81675 Munich, Germany
[3] Imperial Coll London, Dept Comp, London SW7 2RH, England
[4] Tech Univ Munich, Dept Comp Sci, D-81541 Munich, Germany
[5] Tech Univ Munich, Dept Dermatol & Allergy, D-80337 Munich, Germany
[6] Tech Univ Munich, Dept Comp Sci, D-81675 Munich, Germany
[7] Univ Autonoma Madrid, Dept Tecnol Elect & Comunicac, Madrid 28049, Spain
[8] Inst Invest Sanitaria Fdn Jimenez Diaz, Madrid 28015, Spain
[9] Univ Zurich, Dept Quant Biomed, CH-8006 Zurich, Switzerland
[10] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Chair Biol Imaging, Sch Med, D-81675 Munich, Germany
[11] Tech Univ Munich, Munich Inst Robot & Machine Intelligence MIRMI, D-80992 Munich, Germany
基金
欧盟地平线“2020”;
关键词
Skin; Image segmentation; Imaging; Feature extraction; Biomarkers; Morphology; Image reconstruction; Optoacoustic mesoscopy; photoacoustic; skin imaging; skin aging; segmentation; machine learning; OPTICAL COHERENCE TOMOGRAPHY; DIAGNOSIS;
D O I
10.1109/TMI.2024.3356180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
引用
收藏
页码:2074 / 2085
页数:12
相关论文
共 60 条
[1]  
Aanjaneya M, 2011, COMPUTATIONAL GEOMETRY (SCG 11), P37
[2]   Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy [J].
Aguirre, J. ;
Hindelang, B. ;
Berezhnoi, Andrei ;
Darsow, U. ;
Lauffer, F. ;
Eyerich, K. ;
Biedermann, T. ;
Ntziachristos, V. .
PHOTOACOUSTICS, 2018, 10 :31-37
[3]   Motion Quantification and Automated Correction in Clinical RSOM [J].
Aguirre, Juan ;
Berezhnoi, Andrei ;
He, Hailong ;
Schwarz, Mathias ;
Hindelang, Benedikt ;
Omar, Murad ;
Ntziachristos, Vasilis .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (06) :1340-1346
[4]   Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy [J].
Aguirre, Juan ;
Schwarz, Mathias ;
Garzorz, Natalie ;
Omar, Murad ;
Buehler, Andreas ;
Eyerich, Kilian ;
Ntziachristos, Vasilis .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (05)
[5]   Broadband mesoscopic optoacoustic tomography reveals skin layers [J].
Aguirre, Juan ;
Schwarz, Mathias ;
Soliman, Dominik ;
Buehler, Andreas ;
Omar, Murad ;
Ntziachristos, Vasilis .
OPTICS LETTERS, 2014, 39 (21) :6297-6300
[6]  
[Anonymous], 2007, ANSI Z136.1
[7]   The effect of aging on the cutaneous microvasculature [J].
Bentov, Itay ;
Reed, May J. .
MICROVASCULAR RESEARCH, 2015, 100 :25-31
[8]   Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy [J].
Berezhnoi, Andrei ;
Schwarz, Mathias ;
Buehler, Andreas ;
Ovsepian, Saak V. ;
Aguirre, Juan ;
Ntziachristos, Vasilis .
JOURNAL OF BIOPHOTONICS, 2018, 11 (11)
[9]   Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions [J].
Brochez, L ;
Verhaeghe, E ;
Grosshans, E ;
Haneke, E ;
Piérard, G ;
Ruiter, D ;
Naeyaert, JM .
JOURNAL OF PATHOLOGY, 2002, 196 (04) :459-466
[10]   Microvascular dysfunction in diabetic foot disease and ulceration [J].
Chao, Clare Y. L. ;
Cheing, Gladys L. Y. .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2009, 25 (07) :604-614