共 35 条
A Lithium-Ion Battery Remaining Useful Life Prediction Model Based on CEEMDAN Data Preprocessing and HSSA-LSTM-TCN
被引:3
作者:

Qiu, Shaoming
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China

Zhang, Bo
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China

Lv, Yana
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China

Zhang, Jie
论文数: 0 引用数: 0
h-index: 0
机构:
Beijing Jingwei Hirain Technol Co, Beijing 100020, Peoples R China Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China

Zhang, Chao
论文数: 0 引用数: 0
h-index: 0
机构:
ChengMai Technol NanJing Co, Beijing 100080, Peoples R China Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China
机构:
[1] Dalian Univ, Key Lab Network & Commun, Dalian 116622, Peoples R China
[2] Beijing Jingwei Hirain Technol Co, Beijing 100020, Peoples R China
[3] ChengMai Technol NanJing Co, Beijing 100080, Peoples R China
来源:
WORLD ELECTRIC VEHICLE JOURNAL
|
2024年
/
15卷
/
05期
基金:
英国科研创新办公室;
关键词:
lithium-ion battery;
RUL;
CMMEDAN;
TCN;
IHSSA;
LSTM;
PROGNOSTICS;
D O I:
10.3390/wevj15050177
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is crucial for reducing battery usage risks and ensuring the safe operation of systems. Addressing the impact of noise and capacity regeneration-induced nonlinear features on RUL prediction accuracy, this paper proposes a predictive model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) data preprocessing and IHSSA-LSTM-TCN. Firstly, CEEMDAN is used to decompose lithium-ion battery capacity data into high-frequency and low-frequency components. Subsequently, for the high-frequency component, a Temporal Convolutional Network (TCN) prediction model is employed. For the low-frequency component, an Improved Sparrow Search Algorithm (IHSSA) is utilized, which incorporates iterative chaotic mapping and a variable spiral coefficient to optimize the hyperparameters of Long Short-Term Memory (LSTM). The IHSSA-LSTM prediction model is obtained and used for prediction. Finally, the predicted values of the sub-models are combined to obtain the final RUL result. The proposed model is validated using the publicly available NASA dataset and CALCE dataset. The results demonstrate that this model outperforms other models, indicating good predictive performance and robustness.
引用
收藏
页数:21
相关论文
共 35 条
- [1] Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach[J]. SUSTAINABILITY, 2021, 13 (23)Ansari, Shaheer论文数: 0 引用数: 0 h-index: 0机构: Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, MalaysiaAyob, Afida论文数: 0 引用数: 0 h-index: 0机构: Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Ctr Automot Res CAR, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, MalaysiaHossain Lipu, Molla Shahadat论文数: 0 引用数: 0 h-index: 0机构: Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Ctr Automot Res CAR, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, MalaysiaHussain, Aini论文数: 0 引用数: 0 h-index: 0机构: Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, MalaysiaSaad, Mohamad Hanif Md论文数: 0 引用数: 0 h-index: 0机构: Univ Kebangsaan Malaysia, Dept Mech & Mfg Engn, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Inst IR 4 0, Bangi 43600, Selangor, Malaysia Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia
- [2] PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model[J]. SUSTAINABILITY, 2022, 14 (23)Ban, Wenchao论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Ocean Univ, Sch Ocean Engn Equipment, Zhoushan 316000, Peoples R China Zhejiang Ocean Univ, Sch Ocean Engn Equipment, Zhoushan 316000, Peoples R ChinaShen, Liangduo论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Ocean Univ, Sch Ocean Engn Equipment, Zhoushan 316000, Peoples R China Zhejiang Ocean Univ, Sch Ocean Engn Equipment, Zhoushan 316000, Peoples R China
- [3] A long short-term memory neural network based Wiener process model for remaining useful life prediction[J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226Chen, Xiaowu论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R ChinaLiu, Zhen论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Dept Instrument Sci & Technol, Chengdu 611731, Peoples R China
- [4] An Adaptive Prediction Model for the Remaining Life of an Li-Ion Battery Based on the Fusion of the Two-Phase Wiener Process and an Extreme Learning Machine[J]. ELECTRONICS, 2021, 10 (05) : 1 - 19Chen, Xiaowu论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R ChinaLiu, Zhen论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R ChinaWang, Jingyuan论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R ChinaYang, Chenglin论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R ChinaLong, Bing论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R ChinaZhou, Xiuyun论文数: 0 引用数: 0 h-index: 0机构: Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
- [5] A CNN-GRU Approach to the Accurate Prediction of Batteries' Remaining Useful Life from Charging Profiles[J]. COMPUTERS, 2023, 12 (11)论文数: 引用数: h-index:机构:Byun, Yung-Cheol论文数: 0 引用数: 0 h-index: 0机构: Jeju Natl Univ, Dept Comp Engn, Inst Informat Sci & Technol, Major Elect Engn, Jeju 63243, South Korea Jeju Natl Univ, Inst Informat Sci & Technol, Dept Elect Engn, Jeju 63243, South Korea
- [6] Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries With an Integrated Framework of Aging Mechanisms and Data-Driven Methods[J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4722 - 4742Jia, Xinyu论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R ChinaZhang, Caiping论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R ChinaWang, Leyi论文数: 0 引用数: 0 h-index: 0机构: Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R ChinaZhang, Linjing论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R ChinaZhou, Xinzhen论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China
- [7] Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction[J]. ELECTRONICS, 2021, 10 (24)Jin, Siyu论文数: 0 引用数: 0 h-index: 0机构: Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkSui, Xin论文数: 0 引用数: 0 h-index: 0机构: Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkHuang, Xinrong论文数: 0 引用数: 0 h-index: 0机构: Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkWang, Shunli论文数: 0 引用数: 0 h-index: 0机构: Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkTeodorescu, Remus论文数: 0 引用数: 0 h-index: 0机构: Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkStroe, Daniel-Ioan论文数: 0 引用数: 0 h-index: 0机构: Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
- [8] Research on Remaining Useful Life Prognostics Based on Fuzzy Evaluation-Gaussian Process Regression Method[J]. IEEE ACCESS, 2020, 8 : 71965 - 71973Kang, Weijie论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R ChinaXiao, Jiyang论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R ChinaXiao, Mingqing论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R ChinaHu, Yangguang论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R ChinaZhu, Haizhen论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R ChinaLi, Jianfeng论文数: 0 引用数: 0 h-index: 0机构: Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China Air Force Engn Univ, Sch Aeronaut Engn, Xian 710051, Peoples R China
- [9] Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. JOURNAL OF ENERGY STORAGE, 2019, 21 : 510 - 518Li, Xiaoyu论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R ChinaZhang, Lei论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R ChinaWang, Zhenpo论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R ChinaDong, Peng论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
- [10] A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3170 - 3180Liu, Kailong论文数: 0 引用数: 0 h-index: 0机构: Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, England Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, EnglandShang, Yunlong论文数: 0 引用数: 0 h-index: 0机构: Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, EnglandOuyang, Quan论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211100, Peoples R China Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, England论文数: 引用数: h-index:机构: