MLOS: An Infrastructure for Automated Software Performance Engineering

被引:5
作者
Curino, Carlo
Godwal, Neha
Kroth, Brian
Kuryata, Sergiy
Lapinski, Greg
Liu, Siqi
Oks, Slava
Poppe, Olga
Smiechowski, Adam
Thayer, Ed
Weimer, Markus
Zhu, Yiwen
机构
来源
PROCEEDINGS OF THE 4TH WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM 2020 | 2020年
关键词
D O I
10.1145/3399579.3399927
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MLOS is a Data Science powered infrastructure and methodology to democratize and automate Software Performance Engineering. MLOS enables continuous, instance-level, robust, and trackable systems optimization.
引用
收藏
页数:5
相关论文
共 25 条
[1]   A Survey on Compiler Autotuning using Machine Learning [J].
Ashouri, Amir H. ;
Killian, William ;
Cavazos, John ;
Palermo, Gianluca ;
Silvano, Cristina .
ACM COMPUTING SURVEYS, 2019, 51 (05)
[2]  
Bai J., 2019, GitHub repository
[3]  
Carbune V, 2019, Arxiv, DOI arXiv:1810.00619
[4]   AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications [J].
Chen, Dehao ;
Li, David Xinliang ;
Moseley, Tipp .
PROCEEDINGS OF CGO 2016: THE 14TH INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2016, :12-23
[5]  
Ding JL, 2020, Arxiv, DOI arXiv:1905.08898
[6]  
Duan SY, 2009, PROC VLDB ENDOW, V2
[7]  
Eastep J., 2011, Proceedings of the 8th ACM international conference on Autonomic computing, ICAC '11, P11
[8]   Milepost GCC: Machine Learning Enabled Self-tuning Compiler [J].
Fursin, Grigori ;
Kashnikov, Yuriy ;
Memon, Abdul Wahid ;
Chamski, Zbigniew ;
Temam, Olivier ;
Namolaru, Mircea ;
Yom-Tov, Elad ;
Mendelson, Bilha ;
Zaks, Ayal ;
Courtois, Eric ;
Bodin, Francois ;
Barnard, Phil ;
Ashton, Elton ;
Bonilla, Edwin ;
Thomson, John ;
Williams, Christopher K. I. ;
O'Boyle, Michael .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2011, 39 (03) :296-327
[9]  
github, ADS
[10]  
github, MLOS