AGiLE: Enhancing Adaptive GOP in Live Video Streaming

被引:0
作者
Chen, Cheng [1 ]
Yin, Wenpei [2 ]
Huang, Zhexiong [1 ]
Shi, Shu [1 ]
机构
[1] ByteDance, Beijing, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2024 15TH ACM MULTIMEDIA SYSTEMS CONFERENCE 2024, MMSYS 2024 | 2024年
关键词
Live Streaming; Adaptive GOP; Video Encoding;
D O I
10.1145/3625468.3647609
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As live streaming video continues to gain popularity, encoding efficiency remains a critical challenge. Current commercial systems limit the Group of Picture (GOP) length to optimize for spontaneous viewer access, but this often compromises encoding efficiency, especially for popular live streams with intricate background textures and minimal global motion. This paper introduces AGiLE (Adaptive GOP in Live video Encoding), an innovative solution that employs 'pseudo-GOP' to separate encoding efficiency from transmission needs. AGiLE is designed for easy industry adoption and includes a supervised-learning based algorithm for adaptive GOP selection. Our experiments on Douyin's popular live content indicate that AGiLE can reduce bandwidth usage by up to 3.48%, making it a promising solution for the future of live streaming.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 50 条
  • [21] System Architecture for Ubiquitous Live Video Streaming in University Network Environment
    Dludla, Angeline G.
    Bembe, Mncedisi J.
    Byambaakhuu, Badamsuren
    Abdulai, Mohammed-Sani
    Rho, Jae Jeung
    AFRICON, 2013, 2013, : 485 - 489
  • [22] GOP STRUCTURE ADAPTIVE TO THE VIDEO CONTENT FOR EFFICIENT H.264/AVC ENCODING
    Zatt, Bruno
    Porto, Marcelo
    Scharcanski, Jacob
    Bampi, Sergio
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3053 - 3056
  • [23] Learning Accurate Network Dynamics for Enhanced Adaptive Video Streaming
    Yin, Jiaoyang
    Chen, Hao
    Xu, Yiling
    Ma, Zhan
    Xu, Xiaozhong
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (03) : 808 - 821
  • [24] Adaptive packet scheduling for scalable video streaming with network coding
    Huang, Shenglan
    Izquierdo, Ebroul
    Hao, Pengwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 : 10 - 20
  • [25] Adaptive QoS-aware multipath congestion control for live streaming
    Ji, Xiaolan
    Han, Biao
    Xu, Cao
    Song, Congxi
    Su, Jinshu
    COMPUTER NETWORKS, 2023, 220
  • [26] Impact of Multiple Video Representations in Live Streaming: A Cost, Bandwidth, and QoE Analysis
    Bilal, Kashif
    Erbad, Aiman
    2017 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E 2017), 2017, : 88 - 94
  • [27] Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming
    Zhu, Xiao
    Sen, Subhabrata
    Mao, Z. Morley
    MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, 2021, : 36 - 50
  • [28] LiveSR: Enabling Universal HD Live Video Streaming With Crowdsourced Online Learning
    Luo, Zhenxiao
    Wang, Zelong
    Hu, Miao
    Zhou, Yipeng
    Wu, Di
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2788 - 2798
  • [29] A hybrid NDN-IP Architecture for Live Video Streaming: A QoE Analysis
    Dasgupta, Ishita
    Shannigrahit, Susmit
    Zink, Michael
    23RD IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2021), 2021, : 148 - 157
  • [30] Vabis: Video Adaptation Bitrate System for Time-Critical Live Streaming
    Feng, Tongtong
    Sun, Haifeng
    Qi, Qi
    Wang, Jingyu
    Liao, Jianxin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2963 - 2976