AGiLE: Enhancing Adaptive GOP in Live Video Streaming

被引:0
作者
Chen, Cheng [1 ]
Yin, Wenpei [2 ]
Huang, Zhexiong [1 ]
Shi, Shu [1 ]
机构
[1] ByteDance, Beijing, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2024 15TH ACM MULTIMEDIA SYSTEMS CONFERENCE 2024, MMSYS 2024 | 2024年
关键词
Live Streaming; Adaptive GOP; Video Encoding;
D O I
10.1145/3625468.3647609
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As live streaming video continues to gain popularity, encoding efficiency remains a critical challenge. Current commercial systems limit the Group of Picture (GOP) length to optimize for spontaneous viewer access, but this often compromises encoding efficiency, especially for popular live streams with intricate background textures and minimal global motion. This paper introduces AGiLE (Adaptive GOP in Live video Encoding), an innovative solution that employs 'pseudo-GOP' to separate encoding efficiency from transmission needs. AGiLE is designed for easy industry adoption and includes a supervised-learning based algorithm for adaptive GOP selection. Our experiments on Douyin's popular live content indicate that AGiLE can reduce bandwidth usage by up to 3.48%, making it a promising solution for the future of live streaming.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 50 条
[21]   System Architecture for Ubiquitous Live Video Streaming in University Network Environment [J].
Dludla, Angeline G. ;
Bembe, Mncedisi J. ;
Byambaakhuu, Badamsuren ;
Abdulai, Mohammed-Sani ;
Rho, Jae Jeung .
AFRICON, 2013, 2013, :485-489
[22]   GOP STRUCTURE ADAPTIVE TO THE VIDEO CONTENT FOR EFFICIENT H.264/AVC ENCODING [J].
Zatt, Bruno ;
Porto, Marcelo ;
Scharcanski, Jacob ;
Bampi, Sergio .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :3053-3056
[23]   Learning Accurate Network Dynamics for Enhanced Adaptive Video Streaming [J].
Yin, Jiaoyang ;
Chen, Hao ;
Xu, Yiling ;
Ma, Zhan ;
Xu, Xiaozhong .
IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (03) :808-821
[24]   Adaptive packet scheduling for scalable video streaming with network coding [J].
Huang, Shenglan ;
Izquierdo, Ebroul ;
Hao, Pengwei .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 :10-20
[25]   Adaptive QoS-aware multipath congestion control for live streaming [J].
Ji, Xiaolan ;
Han, Biao ;
Xu, Cao ;
Song, Congxi ;
Su, Jinshu .
COMPUTER NETWORKS, 2023, 220
[26]   Impact of Multiple Video Representations in Live Streaming: A Cost, Bandwidth, and QoE Analysis [J].
Bilal, Kashif ;
Erbad, Aiman .
2017 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E 2017), 2017, :88-94
[27]   Livelyzer: Analyzing the First-Mile Ingest Performance of Live Video Streaming [J].
Zhu, Xiao ;
Sen, Subhabrata ;
Mao, Z. Morley .
MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, 2021, :36-50
[28]   LiveSR: Enabling Universal HD Live Video Streaming With Crowdsourced Online Learning [J].
Luo, Zhenxiao ;
Wang, Zelong ;
Hu, Miao ;
Zhou, Yipeng ;
Wu, Di .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :2788-2798
[29]   A hybrid NDN-IP Architecture for Live Video Streaming: A QoE Analysis [J].
Dasgupta, Ishita ;
Shannigrahit, Susmit ;
Zink, Michael .
23RD IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2021), 2021, :148-157
[30]   Vabis: Video Adaptation Bitrate System for Time-Critical Live Streaming [J].
Feng, Tongtong ;
Sun, Haifeng ;
Qi, Qi ;
Wang, Jingyu ;
Liao, Jianxin .
IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) :2963-2976