A comprehensive survey on Machine Learning techniques in opportunistic networks: Advances, challenges and future directions

被引:1
作者
Gandhi, Jay [1 ]
Narmawala, Zunnun [1 ]
机构
[1] Nirma Univ, Inst Technol, Dept Comp Sci & Engn, Ahmadabad 382481, India
关键词
Machine Learning; Opportunistic networks; VANET; MANET; Link prediction; Friendship strength; Dynamic topology; ROUTING PROTOCOL; MOBILITY MODELS; ALGORITHM; PERFORMANCE; FRAMEWORK; POLICIES; IMPACT;
D O I
10.1016/j.pmcj.2024.101917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine Learning (ML) is growing in popularity and is applied in numerous fields to solve complex problems. Opportunistic Networks are a type of Ad -hoc Network where a contemporaneous path does not always exist. So, forwarding methods that assume the availability of contemporaneous paths does not work. ML techniques are applied to resolve the fundamental problems in Opportunistic Networks, including contact probability, link prediction, making a forwarding decision, friendship strength, and dynamic topology. The paper summarises different ML techniques applied in Opportunistic Networks with their benefits, research challenges, and future opportunities. The study provides insight into the Opportunistic Networks with ML and motivates the researcher to apply ML techniques to overcome various challenges in Opportunistic Networks.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] FSF: Applying Machine Learning Techniques to Data Forwarding in Socially Selfish Opportunistic Networks
    Souza, Camilo
    Mota, Edjair
    Soares, Diogo
    Manzoni, Pietro
    Cano, Juan-Carlos
    Calafate, Carlos T.
    Hernandez-Orallo, Enrique
    SENSORS, 2019, 19 (10)
  • [32] Live virtual machine migration: A survey, research challenges, and future directions
    Imran, Muhammad
    Ibrahim, Muhammad
    Din, Muhammad Salah Ud
    Rehman, Muhammad Atif Ur
    Kim, Byung Seo
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [33] Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions
    Alafif, Tarik
    Tehame, Abdul Muneeim
    Bajaba, Saleh
    Barnawi, Ahmed
    Zia, Saad
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (03) : 1 - 24
  • [34] Machine learning and deep learning techniques for the analysis of heart disease: a systematic literature review, open challenges and future directions
    Bhushan, Megha
    Pandit, Akkshat
    Garg, Ayush
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14035 - 14086
  • [35] Machine Learning for Security in Vehicular Networks: A Comprehensive Survey
    Talpur, Anum
    Gurusamy, Mohan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (01): : 346 - 379
  • [36] Machine learning for intelligent optical networks: A comprehensive survey
    Gu, Rentao
    Yang, Zeyuan
    Ji, Yuefeng
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 157
  • [37] Deep Learning and Machine Learning for Malaria Detection: Overview, Challenges and Future Directions
    Jdey, Imen
    Hcini, Hazala
    Ltifi, Hela
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2024, 23 (05) : 1745 - 1776
  • [38] Machine learning and deep learning techniques for the analysis of heart disease: a systematic literature review, open challenges and future directions
    Megha Bhushan
    Akkshat Pandit
    Ayush Garg
    Artificial Intelligence Review, 2023, 56 : 14035 - 14086
  • [39] Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches
    Qadri, Syed Asif Ahmad
    Huang, Nen-Fu
    Wani, Taiba Majid
    Bhat, Showkat Ahmad
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2639 - 2670
  • [40] Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches
    Qadri, Syed Asif Ahmad
    Huang, Nen-Fu
    Wani, Taiba Majid
    Bhat, Showkat Ahmad
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2639 - 2670