Robust weed recognition through color based image segmentation and convolution neural network based classification

被引:0
|
作者
Khan, M. Nazmuzzaman [1 ]
Anwar, Sohel [1 ]
机构
[1] Indiana Univ Purdue Univ Indianapolis, Mech & Energy Engn Dept, Indiana, PA 46202 USA
关键词
Image-segmentation; image-classification; precision-farming;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current image classification techniques for weed detection (classic vision techniques and deep-neural net) provide encouraging results under controlled environment. But most of the algorithms are not robust enough for real-world application. Different lighting conditions and shadows directly impact vegetation color. Varying outdoor lighting conditions create different colors, noise levels, contrast and brightness. High component of illumination causes sensor (industrial camera) saturation. As a result, threshold-based classification algorithms usually fail. To overcome this shortfall, we used visible spectral-index based segmentation to segment the weeds from background. Mean, variance, kurtosis, and skewness are calculated for each input image and image quality (good or bad) is determined. Bad quality image is converted to good-quality image using contrast limited adaptive histogram equalization (CLAHE) before segmentation. A convolution neural network (CNN) based classifier is then trained to classify three different types of weed (Ragweed, Pigweed and Cocklebur) common in a corn field. The main objective of this work is to construct a robust classifier, capable of classifying between three weed species in the presence of occlusion, noise, illumination variation, and motion blurring. Proposed histogram statistics-based image enhancement process solved weed mis-segmentation under extreme lighting condition. CNN based classifier shows accurate, robust classification under low-to-mid level motion blurring and various levels of noise.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Facial Expression Recognition Based on Convolution Neural Network
    Duan, Yue
    Zhou, Linli
    Wu, Yue
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE & APPLICATION TECHNOLOGY (ICCIA 2017), 2017, 74 : 339 - 343
  • [42] The Ancient Pictogram Recognition Based on Convolution Neural Network
    Cui, Qiao
    Zheng, Yutong
    2017 16TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES), 2017, : 97 - 99
  • [43] Bimanual gesture recognition based on convolution neural network
    Wu H.
    Li G.
    Sun Y.
    Jiang G.
    Jiang D.
    International Journal of Wireless and Mobile Computing, 2020, 18 (04) : 311 - 319
  • [44] Emotion Recognition Algorithm Based on Convolution Neural Network
    Cheng, Chunling
    Wei, Xianwei
    Jian, Zhou
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [45] Buckwheat Disease Recognition Based on Convolution Neural Network
    Liu, Xiaojuan
    Zhou, Shangbo
    Chen, Shanxiong
    Yi, Zelin
    Pan, Hongyu
    Yao, Rui
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [46] Hand gesture recognition based on convolution neural network
    Gongfa Li
    Heng Tang
    Ying Sun
    Jianyi Kong
    Guozhang Jiang
    Du Jiang
    Bo Tao
    Shuang Xu
    Honghai Liu
    Cluster Computing, 2019, 22 : 2719 - 2729
  • [47] A Face Recognition System Based on Convolution Neural Network
    Qiao, Shijie
    Ma, Jie
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1923 - 1927
  • [48] Hand gesture recognition based on convolution neural network
    Li, Gongfa
    Tang, Heng
    Sun, Ying
    Kong, Jianyi
    Jiang, Guozhang
    Jiang, Du
    Tao, Bo
    Xu, Shuang
    Liu, Honghai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (02): : S2719 - S2729
  • [49] Image Recognition Algorithm Based on Convolution Neural Network and Particle Swarm Optimization SVM
    Song Zhengcheng
    2018 4TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT AND INFORMATION TECHNOLOGY (ICEMIT 2018), 2018, : 1372 - 1376
  • [50] Research on Remote Sensing Image Target Recognition Based on Deep Convolution Neural Network
    Han, Xiaofeng
    Jiang, Tao
    Zhao, Zifei
    Lei, Zhongteng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (05)