DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model

被引:0
作者
Gu, Xiuye [1 ]
Cui, Yin [1 ,2 ]
Huang, Jonathan [1 ]
Rashwan, Abdullah [1 ]
Yang, Xuan [1 ]
Zhou, Xingyi [1 ]
Ghiasi, Golnaz [1 ]
Kuo, Weicheng [1 ]
Chen, Huizhong [1 ]
Chen, Liang-Chieh [1 ,3 ]
Ross, David [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] NVIDIA, Santa Clara, CA USA
[3] ByteDance, Beijing, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Observing the close relationship among panoptic, semantic and instance segmentation tasks, we propose to train a universal multi-dataset multi-task segmentation model: DaTaSeg. We use a shared representation (mask proposals with class predictions) for all tasks. To tackle task discrepancy, we adopt different merge operations and post-processing for different tasks. We also leverage weak-supervision, allowing our segmentation model to benefit from cheaper bounding box annotations. To share knowledge across datasets, we use text embeddings from the same semantic embedding space as classifiers and share all network parameters among datasets. We train DaTaSeg on ADE semantic, COCO panoptic, and Objects365 detection datasets. DaTaSeg improves performance on all datasets, especially small-scale datasets, achieving 54.0 mIoU on ADE semantic and 53.5 PQ on COCO panoptic. DaTaSeg also enables weakly-supervised knowledge transfer on ADE panoptic and Objects365 instance segmentation. Experiments show DaTaSeg scales with the number of training datasets and enables open-vocabulary segmentation through direct transfer. In addition, we annotate an Objects365 instance segmentation set of 1,000 images and release it as a public evaluation benchmark on https://laoreja.github.io/dataseg.
引用
收藏
页数:26
相关论文
共 75 条
[31]  
Kuhn H. W., 1955, Naval research logistics quarterly, V2, P83, DOI [DOI 10.1002/NAV.20053, 10.1002/nav.20053, 10.1002/nav.3800020109]
[32]   Box2Seg: Attention Weighted Loss and Discriminative Feature Learning for Weakly Supervised Segmentation [J].
Kulharia, Viveka ;
Chandra, Siddhartha ;
Agrawal, Amit ;
Torr, Philip ;
Tyagi, Ambrish .
COMPUTER VISION - ECCV 2020, PT XXVII, 2020, 12372 :290-308
[33]   MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [J].
Lambert, John ;
Liu, Zhuang ;
Sener, Ozan ;
Hays, James ;
Koltun, Vladlen .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2876-2885
[34]  
Lan Shiyi, 2023, CVPR
[35]  
Lan Shiyi, 2021, ICCV
[36]  
Li Boyi, 2022, ICLR
[37]  
Li Wentong, 2022, ARXIV221201579
[38]   Recent Progress of Benzodifuran-Based Polymer Donors for High-Performance Organic Photovoltaics [J].
Li, Xiaoming ;
Li, Yan ;
Zhang, Yong ;
Sun, Yanming .
SMALL SCIENCE, 2022, 2 (06)
[39]  
Liang Feng, 2023, CVPR
[40]  
Likhosherstov Valerii, 2021, ARXIV211112993