Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation

被引:10
|
作者
Zhang, Bingke [1 ]
Liu, Yaxin [1 ]
Wang, Dongbo [1 ]
He, Wen [1 ]
Fang, Xuan [2 ,3 ]
Zhao, Chenchen [1 ]
Pan, Jingwen [1 ]
Liu, Donghao [1 ]
Liu, Sihang [1 ]
Chen, Tianyuan [1 ]
Zhao, Liancheng [1 ]
Wang, Jinzhong [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Phys, State Key Lab High Power Semicond Lasers, Changchun 130022, Peoples R China
[3] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
关键词
Bi2WO6; S-scheme; CO2; reduction; Heterojunction; ENERGY; NANOSHEETS;
D O I
10.1016/j.seppur.2024.128893
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
S-scheme heterojunction photocatalysts featuring efficient charge transport paths provide a promising strategy for cooperative achieving photocatalytic CO2 reduction reaction (CO2RR) and Rhodamine B (RhB) degradation. In this work, S-scheme heterojunctions composed of g-C3N4 nanosheets coated on Bi2WO6 nanosheets were prepared by a one-step hydrothermal method, resulting in broad-spectrum light absorption, high electron-hole separation efficiency, and excellent photocatalytic CO2 reduction and RhB oxidization performance. Mechanistic analysis revealed the formation of a directional charge transport path at the interface of the heterojunction, which maintained a high oxidation and reduction potential and improved the efficiency of photoexcited carrier separation. In particular, the synergistic reaction system showed excellent photoredox activity compared with the two separate half-reactions. The optimal catalyst 15CN/BWO displayed the highest CO2 conversion efficiency, with CO and CH4 generation rates of 4.3 and 2.7 mu mol g- 1h- 1, respectively, and the degradation efficiency of the composite heterojunction was significantly higher than that of its constituent materials. This work provides a new possibility for designing a novel dual-function photocatalytic reaction system.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance
    Jiao, Zheng
    Tang, Yan
    Zhao, Pandeng
    Li, Shen
    Sun, Tianchi
    Cui, Shicong
    Cheng, Lingli
    MATERIALS RESEARCH BULLETIN, 2019, 113 : 241 - 249
  • [42] Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity
    Ma, Dong
    Wu, Juan
    Gao, Mengchun
    Xin, Yanjun
    Ma, Tianjin
    Sun, Yuying
    CHEMICAL ENGINEERING JOURNAL, 2016, 290 : 136 - 146
  • [43] Photocatalytic CO2 Reduction Enabled by Interfacial S-Scheme Heterojunction between Ultrasmall Copper Phosphosulfide and g-C3N4
    Zhang, Xiandi
    Kim, Daekyu
    Yan, Jia
    Lee, Lawrence Yoon Suk
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) : 9762 - 9770
  • [44] Insight into the properties, morphologies and photocatalytic applications of S-scheme Bi2WO6
    Mandyal, Parteek
    Guleria, Ankita
    Sharma, Rohit
    Sambyal, Shabnam
    Priye, Aashish
    Fang, Baizeng
    Shandilya, Pooja
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [45] In-situ construction of g-C3N4/LaPO4 3 N 4 /LaPO 4 S-scheme heterostructure with nitrogen vacancy for boosting photocatalytic reduction of CO2 2
    Bai, Shuan
    Zhang, Feipeng
    Zhang, Yanfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [46] Construction of S-scheme heterojunction by doping Bi2WO6 into Bi2O3 for efficiently enhanced visible-light photocatalytic performance
    Hu, Wenna
    Wu, Fan
    Liu, Wei
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (06) : 4265 - 4282
  • [47] Construction of S-scheme heterojunction by doping Bi2WO6 into Bi2O3 for efficiently enhanced visible-light photocatalytic performance
    Wenna Hu
    Fan Wu
    Wei Liu
    Journal of Materials Science, 2022, 57 : 4265 - 4282
  • [48] g-C3N4/TiO2 S-scheme heterojunction photocatalyst with enhanced photocatalytic Carbamazepine degradation and mineralization
    Kane, Abdoulaye
    Chafiq, Latifa
    Dalhatou, Sadou
    Bonnet, Pierre
    Nasr, Maryline
    Gaillard, Nathalie
    Dikdim, Jean Marie Dangwang
    Monier, Guillaume
    Assadi, Aymen Amine
    Zeghioud, Hicham
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 430
  • [49] WO3/BiOBr S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO2 Reduction
    Li, Chen
    Lu, Xingyu
    Chen, Liuyun
    Xie, Xinling
    Qin, Zuzeng
    Ji, Hongbing
    Su, Tongming
    MATERIALS, 2024, 17 (13)
  • [50] S-scheme TiO2/Bi2WO6 heterojunction for enhanced photocatalytic selective oxidation of toluene
    Zhan, Xingxin
    Ding, Chunhua
    Zhao, Qihao
    Fang, Yanxiong
    OPTICAL MATERIALS, 2024, 155