Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation

被引:10
|
作者
Zhang, Bingke [1 ]
Liu, Yaxin [1 ]
Wang, Dongbo [1 ]
He, Wen [1 ]
Fang, Xuan [2 ,3 ]
Zhao, Chenchen [1 ]
Pan, Jingwen [1 ]
Liu, Donghao [1 ]
Liu, Sihang [1 ]
Chen, Tianyuan [1 ]
Zhao, Liancheng [1 ]
Wang, Jinzhong [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Phys, State Key Lab High Power Semicond Lasers, Changchun 130022, Peoples R China
[3] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
关键词
Bi2WO6; S-scheme; CO2; reduction; Heterojunction; ENERGY; NANOSHEETS;
D O I
10.1016/j.seppur.2024.128893
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
S-scheme heterojunction photocatalysts featuring efficient charge transport paths provide a promising strategy for cooperative achieving photocatalytic CO2 reduction reaction (CO2RR) and Rhodamine B (RhB) degradation. In this work, S-scheme heterojunctions composed of g-C3N4 nanosheets coated on Bi2WO6 nanosheets were prepared by a one-step hydrothermal method, resulting in broad-spectrum light absorption, high electron-hole separation efficiency, and excellent photocatalytic CO2 reduction and RhB oxidization performance. Mechanistic analysis revealed the formation of a directional charge transport path at the interface of the heterojunction, which maintained a high oxidation and reduction potential and improved the efficiency of photoexcited carrier separation. In particular, the synergistic reaction system showed excellent photoredox activity compared with the two separate half-reactions. The optimal catalyst 15CN/BWO displayed the highest CO2 conversion efficiency, with CO and CH4 generation rates of 4.3 and 2.7 mu mol g- 1h- 1, respectively, and the degradation efficiency of the composite heterojunction was significantly higher than that of its constituent materials. This work provides a new possibility for designing a novel dual-function photocatalytic reaction system.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] NiO/g-C3N4 p-n Heterojunctions Wrapped by rGO for the Enhanced CO2 Photocatalytic Reduction
    Tao, Fei-Fei
    Dong, Yali
    Yang, Lingang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6709 - 6718
  • [32] Adsorption/photocatalytic hierarchical nanomaterial g-C3N4/Bi2WO6/ACF composites to the dynamic degradation of toluene
    Wei, HaiDi
    Sun, EnCheng
    Zhang, Shuai
    Li, Yanjun
    Bi, Yuxi
    Zhao, Xiaoxuan
    Liu, Fang
    Wang, Yongqiang
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (02) : 509 - 521
  • [33] Synthesis of Bi2O3/g-C3N4 for enhanced photocatalytic CO2 reduction with a Z-scheme mechanism
    Peng, Hao
    Guo, Rui-Tang
    Lin, He
    Liu, Xing-Yu
    RSC ADVANCES, 2019, 9 (64) : 37162 - 37170
  • [34] g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation
    Li, Hongji
    Wang, Dandan
    Miao, Chun
    Xia, Fengwu
    Wang, Yubo
    Wang, Yutong
    Liu, Chunbo
    Che, Guangbo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (04):
  • [35] Construction of biochar assisted S-scheme of CeO2/g-C3N4 with enhanced photoreduction CO2 to CO activity and selectivity
    Yu, Xiuna
    Tang, Xu
    Luo, Hongyu
    Mao, Yanli
    MATERIALS RESEARCH BULLETIN, 2025, 181
  • [36] Enhancing CO2 photoreduction by construction of g-C3N4/Co-MOFs S-scheme heterojunction
    Sabir, Muhammad
    Sayed, Mahmoud
    Zeng, Zhuofan
    Cheng, Bei
    Wang, Wang
    Wang, Chuanbin
    Xu, Jingsan
    Cao, Shaowen
    APPLIED SURFACE SCIENCE, 2025, 693
  • [37] Facile synthesis of hierarchical S-scheme In2S3/Bi2WO6 heterostructures with enhanced photocatalytic activity
    Li, Qiang
    Wang, Lijie
    Song, Jupu
    Zhang, Linshen
    Shao, Chunfeng
    Li, Hong
    Zhang, Hemin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [38] Fabrication of mediator-free g-C3N4/Bi2WO6 Z-scheme with enhanced photocatalytic reduction dechlorination performance of 2,4-DCP
    Long, Gaoyuan
    Ding, Jiafeng
    Xie, Lihong
    Sun, Runze
    Chen, Mengxia
    Zhou, Yanfang
    Huang, Xiuying
    Han, Gaorui
    Li, Yajun
    Zhao, Weirong
    APPLIED SURFACE SCIENCE, 2018, 455 : 1010 - 1018
  • [39] Enhanced photocatalytic activity of g-C3N4/Bi2WO6 heterojunction via Z-scheme charge-transfer mechanism
    Qin, Fengqiu
    Xia, Yangwen
    Yang, Daixiong
    Xiao, Tian
    Zhu, Xiaodong
    Feng, Wei
    Qi, Zhiyong
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1316
  • [40] 2D Layered g-C3N4/WO3/WS2 S-Scheme Heterojunctions with Enhanced Photochemical Performance
    Song, Tong
    Xie, Cong
    Matras-Postolek, Katarzyna
    Yang, Ping
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (35): : 19382 - 19393