Control-oriented multiphysics model of a lithium-ion battery for thermal runaway estimation under operational and abuse conditions

被引:0
|
作者
Kim, Jun-Hyeong [1 ]
Kwak, Eunji [1 ]
Jeong, Jinho [1 ]
Oh, Ki-Yong [1 ,2 ]
机构
[1] Hanyang Univ, Dept Mech Convergence Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Hanyang Univ, Sch Mech Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Multiphysics modeling; Electrochemical model; Thermal runaway; Thermal resistance network; ELECTRIC VEHICLES; SAFETY; BEHAVIOR; POWER; MANAGEMENT; EXPLOSION; MECHANISM; CIRCUIT; ISSUES;
D O I
10.1016/j.applthermaleng.2024.123895
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study proposes a control-oriented multiphysics model for lithium-ion batteries (LIBs) that can estimate electrochemical-thermal responses in real time under normal operation and abuse conditions. The proposed model integrates the simplified electrochemical model, the thermal resistance network, and the adaptive timestepping method to ensure computational efficiency without sacrificing the accuracy. Specifically, the diffusion equation of the electrochemical model is simplified by addressing Pade <acute accent> approximation. The thermal resistance network estimates 3D temperature distribution through simple matrix multiplication to account for the entropic, ohmic, and chemical reaction during thermal runaway. The adaptive time-stepping method further secures accurate yet fast explicit calculation. Quantitative experimental validation reveals the high accuracy and robustness, and fast inference time of the proposed model to estimate the electrochemical-thermal responses with the average inference time of 0.0047 s per step. The application of the proposed model on the 26650 LFP cell also demonstrates the versatility on various shapes and types of LIBs. The systematic analysis on the 3D temperature distribution in the LIB of interest not only confirms the effectiveness of the internal temperature monitoring but also ensures the virtual sensing capability. The versatility of the proposed model underscores both design- and control- enabling solutions for battery thermal management.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [32] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [33] Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Qiao, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30956 - 30963
  • [34] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    Tang, W.
    Xu, X. M.
    Li, R. Z.
    Jin, H. F.
    Cao, L. D.
    Wang, H. M.
    IONICS, 2020, 26 (12) : 6133 - 6143
  • [35] Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions
    Chen, Haodong
    Kalamaras, Evangelos
    Abaza, Ahmed
    Tripathy, Yashraj
    Page, Jason
    Barai, Anup
    APPLIED ENERGY, 2023, 349
  • [36] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81
  • [37] Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [38] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Meng Wang
    Anh V.Le
    Yang Shi
    Daniel J.Noelle
    Hyojung Yoon
    Minghao Zhang
    Y.Shirley Meng
    Yu Qiao
    JournalofMaterialsScience&Technology, 2016, 32 (11) : 1117 - 1121
  • [39] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Wang, Meng
    Le, Anh V.
    Shi, Yang
    Noelle, Daniel J.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (11) : 1117 - 1121
  • [40] A Multiphysics Simulation of the Thermal Runaway in Large-Format Lithium-ion Batteries
    Xu, Jiajun
    Hendricks, Christopher
    PROCEEDINGS OF THE 2019 EIGHTEENTH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2019), 2019, : 815 - 821