Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica

被引:4
作者
Wang, Shuhui [1 ]
Sun, Xu [1 ]
Han, Yuqing [1 ]
Li, Zhuo [1 ]
Lu, Xiaocong [1 ]
Shi, Hongrui [1 ]
Zhang, Cuiying [1 ,4 ]
Wong, Adison [2 ,5 ]
Yu, Aiqun [1 ,3 ]
机构
[1] Tianjin Univ Sci & Technol, State Key Lab Food Nutr & Safety, Key Lab Ind Fermentat Microbiol, Tianjin Key Lab Ind Microbiol,Coll Biotechnol,Mini, 29 13th St TEDA, Tianjin 300457, Peoples R China
[2] Singapore Inst Technol, Food Chem & Biotechnol Cluster, Singapore 138683, Singapore
[3] Tianjin Univ Sci & TecShnol, Tianjin, Peoples R China
[4] Tianjin Univ Sci & Technol, Tianjin, Peoples R China
[5] Singapore Inst Technol, Singapore, Singapore
来源
METABOLIC ENGINEERING COMMUNICATIONS | 2024年 / 18卷
关键词
Squalene; Y; lipolytica; Metabolic engineering; Waste cooking oil; TRANSPORT; INSIGHTS;
D O I
10.1016/j.mec.2024.e00240
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast Yarrowia lipolytica, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway - specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase - we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using Y. lipolytica cell factories, contributing to circular economy initiatives by valorizing waste materials.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Physiology and genetics of the dimorphic fungus Yarrowia lipolytica
    Barth, G
    Gaillardin, C
    [J]. FEMS MICROBIOLOGY REVIEWS, 1997, 19 (04) : 219 - 237
  • [2] Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts
    Beopoulos, Athanasios
    Haddouche, Ramdane
    Kabran, Philomene
    Dulermo, Thierry
    Chardot, Thierry
    Nicaud, Jean-Marc
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (04) : 1523 - 1537
  • [3] Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis
    Berghoff, Stefan A.
    Spieth, Lena
    Sun, Ting
    Hosang, Leon
    Schlaphoff, Lennart
    Depp, Constanze
    Duking, Tim
    Winchenbach, Jan
    Neuber, Jonathan
    Ewers, David
    Scholz, Patricia
    van der Meer, Franziska
    Cantuti-Castelvetri, Ludovico
    Sasmita, Andrew O.
    Meschkat, Martin
    Ruhwedel, Torben
    Mobius, Wiebke
    Sankowski, Roman
    Prinz, Marco
    Huitinga, Inge
    Sereda, Michael W.
    Odoardi, Francesca
    Ischebeck, Till
    Simons, Mikael
    Stadelmann-Nessler, Christine
    Edgar, Julia M.
    Nave, Klaus-Armin
    Saher, Gesine
    [J]. NATURE NEUROSCIENCE, 2021, 24 (01) : 47 - 60
  • [4] Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals
    Black, PN
    Færgeman, NJ
    DiRusso, CC
    [J]. JOURNAL OF NUTRITION, 2000, 130 (02) : 305S - 309S
  • [5] Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica
    Braga, A.
    Belo, I.
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2016, 32 (10)
  • [6] The shape of human squalene epoxidase expands the arsenal against cancer
    Brown, Andrew J.
    Chua, Ngee Kiat
    Yan, Nieng
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Production of isoprenoid pharmaceuticals by engineered microbes
    Chang, Michelle C. Y.
    Keasling, Jay D.
    [J]. NATURE CHEMICAL BIOLOGY, 2006, 2 (12) : 674 - 681
  • [8] Recent advances in lipid metabolic engineering of oleaginous yeasts
    Chattopadhyay, Atrayee
    Mitra, Mohor
    Maiti, Mrinal K.
    [J]. BIOTECHNOLOGY ADVANCES, 2021, 53
  • [9] Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    Dai, Zhubo
    Liu, Yi
    Zhang, Xianan
    Shi, Mingyu
    Wang, Beibei
    Wang, Dong
    Huang, Luqi
    Zhang, Xueli
    [J]. METABOLIC ENGINEERING, 2013, 20 : 146 - 156
  • [10] Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: New insights into the role of intracellular lipases and lipid body organisation
    Dulermo, Thierry
    Treton, Brigitte
    Beopoulos, Athanasios
    Gnankon, Affoue Philomene Kabran
    Haddouche, Ramdane
    Nicaud, Jean-Marc
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2013, 1831 (09): : 1486 - 1495