Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere

被引:75
作者
Chen, Zehao [1 ,2 ]
Lv, Zhendong [3 ]
Zhang, Zhen [1 ]
Weitz, David A. [4 ,5 ]
Zhang, Hongbo [6 ,7 ,8 ]
Zhang, Yuhui [1 ,3 ]
Cui, Wenguo [2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Nanchen Rd 333, Shanghai 200444, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Inst Traumatol & Orthopaed, Ruijin Hosp, Dept Orthopaed,Sch Med,Shanghai Key Lab Prevent &, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Spine Surg, Renji Hosp, Sch Med, Shanghai, Peoples R China
[4] Harvard Univ, Dept Phys, Cambridge, MA USA
[5] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[6] Abo Akad Univ, Pharmaceut Sci Lab, Turku, Finland
[7] Univ Turku, Turku Biosci Ctr, Turku, Finland
[8] Abo Akad Univ, Turku, Finland
来源
EXPLORATION | 2021年 / 1卷 / 03期
关键词
biomaterials; hydrogel microspheres; microfluidic devices; microfluidics; RAPID FABRICATION; PDMS; GENERATION; SURFACE; FLOW; EMULSIFICATION; MICROPARTICLES; MORPHOLOGY; POLYMERS; CHANNELS;
D O I
10.1002/EXP.20210036
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogel microspheres are a novel functionalmaterial, arousingmuch attention in various fields. Microfluidics, a technology that controls and manipulates fluids at themicron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres withmultiple structures canbe constructed. This reviewpresents anoverviewof advances inmicrofluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogelmicrospheres andmicrofluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and themethod for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
引用
收藏
页数:23
相关论文
共 126 条
[1]   Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach [J].
Ahmed, Husnain ;
Stokke, Bjorn Torger .
LAB ON A CHIP, 2021, 21 (11) :2232-2243
[2]   A versatile microfluidic device for high throughput production of microparticles and cell microencapsulation [J].
Akbari, Samin ;
Pirbodaghi, Tohid ;
Kamm, Roger D. ;
Hammond, Paula T. .
LAB ON A CHIP, 2017, 17 (12) :2067-2075
[3]   Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review [J].
Azimi-Boulali, Javid ;
Madadelahi, Masoud ;
Madou, Marc J. ;
Martinez-Chapa, Sergio O. .
MICROMACHINES, 2020, 11 (06) :1-34
[4]   Precision Synthesis of lmine-Functionalized Reversible Microgel Star Polymers via Dynamic Covalent Cross-Linking of Hydrogen-Bonding Block Copolymer Micelles [J].
Azuma, Yusuke ;
Terashima, Takaya ;
Sawamoto, Mitsuo .
MACROMOLECULES, 2017, 50 (02) :587-596
[5]   Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions [J].
Bauer, Wolfgang-Andreas C. ;
Fischlechner, Martin ;
Abell, Chris ;
Huck, Wilhelm T. S. .
LAB ON A CHIP, 2010, 10 (14) :1814-1819
[6]   Strategies for controlling egress of therapeutic cells from hydrogel microcapsules [J].
Benavente-Babace, Ainara ;
Haase, Kristina ;
Stewart, Duncan J. ;
Godin, Michel .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2019, 13 (04) :612-624
[7]   An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates [J].
Benson, Bryan R. ;
Stone, Howard A. ;
Prud'homme, Robert K. .
LAB ON A CHIP, 2013, 13 (23) :4507-4511
[8]   Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal [J].
Bick, Alison D. ;
Khor, Jian Wei ;
Gai, Ya ;
Tang, Sindy K. Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (19)
[9]   Effect of volume fraction on droplet break-up in an emulsion flowing through a microfluidic constriction [J].
Bick, Alison D. ;
Tang, Sindy K. Y. .
APPLIED PHYSICS LETTERS, 2019, 115 (09)
[10]   Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching [J].
Camp, James P. ;
Stokol, Tracy ;
Shuler, Michael L. .
BIOMEDICAL MICRODEVICES, 2008, 10 (02) :179-186