An integrated heart-torso electromechanical model for the simulation of electrophysiological outputs accounting for myocardial deformation

被引:2
作者
Zappon, Elena [1 ,2 ]
Salvador, Matteo [1 ,3 ]
Piersanti, Roberto [1 ]
Regazzoni, Francesco [1 ]
Dede, Luca [1 ]
Ed, Alfio Quarteroni [4 ,5 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, Milan, Italy
[2] Med Univ Graz, Gottfried Schatz Res Ctr Biophys, Graz, Austria
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA USA
[4] Politecn Milan, Milan, Italy
[5] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
Heart-torso model; Electrocardiograms; Cardiac electromechanics; Multiphysics modeling; Body surface potential maps; 12-LEAD ECG; T-WAVE; POTENTIALS; MOTION; PERSONALIZATION; ORIENTATION; PARAMETERS; MORPHOLOGY; POSITION; IMPACT;
D O I
10.1016/j.cma.2024.117077
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When generating in-silico clinical electrophysiological outputs, such as electrocardiograms (ECGs) and body surface potential maps (BSPMs), mathematical models have relied on single physics, i.e. of the cardiac electrophysiology (EP), neglecting the role of the heart motion. Since the heart is the most powerful source of electrical activity in the human body, its motion dynamically shifts the position of the principal electrical sources in the torso, influencing electrical potential distribution and potentially altering the EP outputs. In this work, we propose a computational model for the simulation of ECGs and BSPMs by coupling a cardiac electromechanical model with a model that simulates the propagation of the EP signal in the torso, thanks to a flexible numerical approach, that simulates the torso domain deformation induced by the myocardial displacement. Our model accounts for the major mechano-electrical feedbacks, along with unidirectional displacement and potential couplings from the heart to the surrounding body. For the numerical discretization, we employ a versatile intergrid transfer operator that allows for the use of different Finite Element spaces to be used in the cardiac and torso domains. Our numerical results are obtained on a realistic 3D biventricular-torso geometry, and cover both cases of sinus rhythm and ventricular tachycardia (VT), solving both the electromechanical -torso model in dynamical domains, and the classical electrophysiologytorso model in static domains. By comparing standard 12 -lead ECG and BSPMs, we highlight the non -negligible effects of the myocardial contraction on the EP -outputs, especially in pathological conditions, such as the VT.
引用
收藏
页数:26
相关论文
共 107 条
[1]   A matrix-free high-order solver for the numerical solution of cardiac electrophysiology [J].
Africa, P. C. ;
Salvador, M. ;
Gervasio, P. ;
Dede', L. ;
Quarteroni, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
[2]   lifex-ep: a robust and efficient software for cardiac electrophysiology simulations [J].
Africa, Pasquale Claudio ;
Piersanti, Roberto ;
Regazzoni, Francesco ;
Bucelli, Michele ;
Salvador, Matteo ;
Fedele, Marco ;
Pagani, Stefano ;
Dede, Luca ;
Quarteroni, Alfio .
BMC BIOINFORMATICS, 2023, 24 (01)
[3]   lifex-fiber: an open tool for myofibers generation in cardiac computational models [J].
Africa, Pasquale Claudio ;
Piersanti, Roberto ;
Fedele, Marco ;
Dede', Luca ;
Quarteroni, Alfio .
BMC BIOINFORMATICS, 2023, 24 (01)
[4]   lifex: A flexible, high performance library for the numerical solution of complex finite element problems [J].
Africa, Pasquale Claudio .
SOFTWAREX, 2022, 20
[5]   Influence of left atrial size on P-wave morphology: differential effects of dilation and hypertrophy [J].
Andlauer, Robin ;
Seemann, Gunnar ;
Baron, Lukas ;
Doessel, Olaf ;
Kohl, Peter ;
Platonov, Pyotr ;
Loewe, Axel .
EUROPACE, 2018, 20 :36-44
[6]  
[Anonymous], 2023, Official website of the center for integrative biomedical computing
[7]  
[Anonymous], 2023, Official paraview website
[8]   An image-based modeling framework for patient-specific computational hemodynamics [J].
Antiga, Luca ;
Piccinelli, Marina ;
Botti, Lorenzo ;
Ene-Iordache, Bogdan ;
Remuzzi, Andrea ;
Steinman, David A. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (11) :1097-1112
[9]   3-DIMENSIONAL SIMULATION OF THE VENTRICULAR DEPOLARIZATION AND REPOLARIZATION PROCESSES AND BODY-SURFACE POTENTIALS - NORMAL HEART AND BUNDLE-BRANCH BLOCK [J].
AOKI, M ;
OKAMOTO, Y ;
MUSHA, T ;
HARUMI, K .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1987, 34 (06) :454-462
[10]   Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models [J].
Arevalo, Hermenegild J. ;
Vadakkumpadan, Fijoy ;
Guallar, Eliseo ;
Jebb, Alexander ;
Malamas, Peter ;
Wu, Katherine C. ;
Trayanova, Natalia A. .
NATURE COMMUNICATIONS, 2016, 7