Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing

被引:17
|
作者
Zhao, Leilei [1 ]
Fang, Chenyu [1 ]
Qin, Binyu [1 ]
Yang, Xiya [2 ]
Poechmueller, Peter [1 ]
机构
[1] Shandong Univ, Sch Integrated Circuits, Jinan 250101, Peoples R China
[2] Jinan Univ, Inst New Energy Technol, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Dual-network Hydrogel; Temperature distribution; Pressure distribution; Self-powered sensor; TRANSPARENT; POLYMER; ENERGY; SYSTEM; FILM;
D O I
10.1016/j.nanoen.2024.109772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conductive hydrogels are gaining attention in flexible electronics due to their high electrical conductivity and stretchable mechanical properties. Utilizing conductive hydrogels as electrodes in triboelectric nanogenerators (TENG) offers a promising avenue for developing versatile, flexible devices. However, the preparation of a multifunctional hydrogel-based TENG remains a challenging task. Here, a dual -network hydrogel TENG is denoted as DNH-TENG. It comprises poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS)/ poly (vinyl alcohol) (PVA)/carboxylated multi -walled carbon nanotube (MWCNT-COOH) and offers the advantages of straightforward fabrication, versatile applications, and efficient output performance. Preparing a double network by combining a conductive network with a soft network improves the tensile properties but reduces its conductivity significantly. Further doping MWCNT-COOH with the dual -network leads to a conjugation effect and hydrogen bonding. This enhancement fortifies the hydrogel structure and augments the electrode's conductivity and mechanical properties. In single electrode mode, the DNH-TENG exhibits a short-circuit current of 16.2 mu A, a transfer charge of 97.3 nC, and an open -circuit voltage of 270.5 V. Furthermore, DNH-TENG exhibits an impressive stretchability, allowing it to be extended to 566%. Using DNH-TENG's exceptional stretchability and ultrahigh sensitivity to mechanical and temperature stimuli, we designed DNH-TENG-based sensor arrays to showcase temperature and pressure distribution monitoring applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications
    Jin, Zhenhui
    Zhao, Fujunzhu
    Lei, Yanlin
    Wang, Yi-Cheng
    NANO ENERGY, 2022, 95
  • [32] Hydrogel-Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review
    Zhang, Chuan Wei
    Hao, Xing Peng
    Zheng, Qiang
    Wu, Zi Liang
    ADVANCED SENSOR RESEARCH, 2023, 2 (06):
  • [33] A flexible triboelectric nanogenerator based on PVA/PTT/LiCl conductive hydrogel for gait monitoring in basketball
    Deng, Liping
    Deng, Yuanxiang
    AIP ADVANCES, 2023, 13 (07)
  • [34] Structurally Designed Hydrogel-Based Pressure Sensors for Wearable Sensing
    Guo, Zhengqiang
    Zhang, Hongrui
    Xie, Weigui
    Liu, Wangyu
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20394 - 20401
  • [35] PVA/SA/MXene dual-network conductive hydrogel for wearable sensor to monitor human motions
    Wang, Tingting
    Wang, Jinqing
    Li, Zhangpeng
    Yue, Mingqiang
    Qing, Xiaoli
    Zhang, Pengxia
    Liao, Xiaozhu
    Fan, Zengjie
    Yang, Shengrong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (07)
  • [36] A highly stretchable, self-adhesive, anti-freezing, and highly sensitive dual-network conductive hydrogel sensor for multifunctional electronic skin
    Zhang, Rui
    Xie, Di
    Zhang, Congcong
    Xu, Zesheng
    Fang, Yiqun
    Wang, Weihong
    Xu, Min
    Song, Yongming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24608 - 24617
  • [37] A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing
    Dong, Kai
    Wu, Zhiyi
    Deng, Jianan
    Wang, Aurelia C.
    Zou, Haiyang
    Chen, Chaoyu
    Hu, Dongmei
    Gu, Bohong
    Sun, Baozhong
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2018, 30 (43)
  • [38] Multifunctional Conductive Copper Tape-Based Triboelectric Nanogenerator and as a Self-Powered Humidity Sensor
    Xia, Kequan
    Zhu, Zhiyuan
    Fu, Jiangming
    Chi, Yue
    Xu, Zhiwei
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (06) : 2741 - 2745
  • [39] A flexible and stretchable triboelectric nanogenerator based on a medical conductive hydrogel for biomechanical energy harvesting and electronic switches
    Zhao, Junwei
    Wang, Yujiang
    Wang, Bo
    Sun, Yuetan
    Lv, Haoqiang
    Wang, Zijian
    Zhang, Wenqing
    Jiang, Yongdong
    NANOSCALE, 2023, 15 (14) : 6812 - 6821
  • [40] Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite
    Deng, Hai-Tao
    Zhang, Xin-Ran
    Wang, Zhi-Yong
    Wen, Dan-Liang
    Ba, Yan-Yuan
    Kim, Beomjoon
    Han, Meng-Di
    Zhang, Hai-Xia
    Zhang, Xiao-Sheng
    NANO ENERGY, 2021, 83