State observer-based Physics-Informed Machine Learning for leader-following tracking control of mobile robot

被引:0
作者
Park, Sejun [1 ]
Lee, S. M. [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Physics-Informed Machine Learning (PIML); State observer; Time-varying parameter estimation; System identification; Leader-following tracking control;
D O I
10.1016/j.isatra.2024.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the novel leader -following tracking control method is proposed for mobile robots, which consists estimation technique of the speed of the leader robot (LR), and a parameter -dependent controller for the follower robot (FR). To estimate the speed of LR, a novel Physics Informed Machine Learning (PIML) is proposed to learn the dynamics of the state observer via the error state model. The dynamics of the state observer in PIML play a significant role for stable learning and state estimation of uncertain models. The gain of the parameter -dependent controller is determined by the convex combination of the robust control technique via the polytopic model. Finally, the tracking performance of the proposed method is verified through the simulation and experiment.
引用
收藏
页码:582 / 591
页数:10
相关论文
共 27 条
  • [1] Leader-follower formation with reduction of the off-tracking and velocity estimation under visibility constraints
    Arteaga-Escamilla, C. Mauricio
    Castro-Linares, Rafael
    Alvarez-Gallegos, Jaime
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (06):
  • [2] Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
    Cai, Shengze
    Wang, Zhicheng
    Fuest, Frederik
    Jeon, Young Jin
    Gray, Callum
    Karniadakis, George Em
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 915
  • [3] Physics-informed neural networks for inverse problems in nano-optics and metamaterials
    Chen, Yuyao
    Lu, Lu
    Karniadakis, George Em
    Dal Negro, Luca
    [J]. OPTICS EXPRESS, 2020, 28 (08) : 11618 - 11633
  • [4] Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots
    Defoort, Michael
    Floquet, Thierry
    Koekoesy, Annemarie
    Perruquetti, Wilfrid
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) : 3944 - 3953
  • [5] Self-Healing Control for Wastewater Treatment Process Based on Variable-Gain State Observer
    Du, Peihao
    Zhong, Weimin
    Peng, Xin
    Li, Linlin
    Li, Zhi
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (10) : 10412 - 10424
  • [6] Performance-guaranteed adaptive self-healing control for wastewater treatment processes
    Du, Peihao
    Peng, Xin
    Li, Zhongmei
    Li, Linlin
    Zhong, Weimin
    [J]. JOURNAL OF PROCESS CONTROL, 2022, 116 : 147 - 158
  • [7] Observer-Based Leader-Following Formation Control Using Onboard Sensor Information
    Gustavi, Tove
    Hu, Xiaoming
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (06) : 1457 - 1462
  • [8] Jagannathan DT, 2007, IEEE 22 INT S INT CO
  • [9] Tracking control of mobile robots: A case study in backstepping
    Jiang, ZP
    Nijmeijer, H
    [J]. AUTOMATICA, 1997, 33 (07) : 1393 - 1399
  • [10] Kanayama Y., 1990, Proceedings 1990 IEEE International Conference on Robotics and Automation (Cat. No.90CH2876-1), P384, DOI 10.1109/ROBOT.1990.126006