A two-species diffusion-advection competition model with protection zones
被引:0
作者:
Tang, De
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Tang, De
[1
]
Chen, Yuming
论文数: 0引用数: 0
h-index: 0
机构:
Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, CanadaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Chen, Yuming
[2
]
机构:
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
In this paper, we study a two -species reaction -diffusion -advection competition model imposed the Danckwerts boundary conditions and with boundary protection zones. Some special cases have been extensively studied, which include reaction -diffusion -advection competition models without protection zones [25,29] and reaction -diffusion competition models with protection zones in non-advective environments [7]. If the product of the two competition rates in the unprotected zone is less than a given value, by establishing a prior estimate and applying the monotone dynamical system theory, we completely characterize the global dynamics, which extends some existing ones. If the product is bigger than the above mentioned value, we find that the size of the protection zone plays an important role in determining the global dynamics. We also discuss the problem of optimal protection zone setting and investigate the effect of advection on the critical size of the protection zone. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 57 条
[1]
[Anonymous], 1984, J. Fac. Sci. Univ. Tokyo
[2]
Ballyk M, 1998, SIAM J APPL MATH, V59, P573
[3]
Cantrell R. S., 2003, Spatial ecology via reaction-diffusion equations
机构:
Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R ChinaUniv New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
Du, Yihong
Liang, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R ChinaUniv New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Ge, Qing
Tang, De
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
机构:
Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R ChinaUniv New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
Du, Yihong
Liang, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R ChinaUniv New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Ge, Qing
Tang, De
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China