Learning consensus representations in multi-latent spaces for multi-view clustering

被引:0
|
作者
Ma, Qianli [1 ]
Zheng, Jiawei [1 ]
Li, Sen [1 ]
Zheng, Zhenjing [1 ]
Cottrell, Garrison W. [2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA USA
基金
中国国家自然科学基金;
关键词
Multi-view learning; Deep clustering; Latent space; Consensus representations;
D O I
10.1016/j.neucom.2024.127899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering integrates features from different views to perform clustering. This problem has attracted increasing attention in recent years because multi-view data has become more common. The mainstream methods focus on learning a common representation or decoupling the view-specific and the shared representations in subspaces and then performing clustering on the fused results. However, it is still an open question how to best enforce that the learned representations possess good clustering properties and thus improve the clustering performance. In this paper, we propose a novel unsupervised model called Deep Multiview Consensus Clustering (DMCC) to learn consensus view-specific representations in multiple latent spaces, where specificity and consistency are jointly retained for representation learning. For each view, DMCC learns view-specific representations in individual latent spaces with the help of a reconstruction target and a soft K-means objective. Furthermore, by aligning the cluster indicator matrices of each view, DMCC encourages consensus across views and enables one view to get help from other views to guide its representation learning. Thus, the learned representations are cluster-friendly within each view, and consistent across views. The proposed method achieves state -of -the -art performance in four metrics on extensive datasets. Among all datasets, our proposed method DMCC achieves an average of 2.6% and 2.5% better performance than stateof -the -art methods in RI and NMI, respectively. We also visualize the learned representations to show that our approach does learn cluster-friendly representations and to demonstrate the effectiveness of encouraging mutual consensus across views.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Multi-view spectral clustering via robust local subspace learning
    Lin Feng
    Lei Cai
    Yang Liu
    Shenglan Liu
    Soft Computing, 2017, 21 : 1937 - 1948
  • [42] Enhanced tensor based embedding anchor learning for multi-view clustering
    Yang, Beihua
    Song, Peng
    Cheng, Yuanbo
    Zhou, Shixuan
    Liu, Zhaowei
    INFORMATION SCIENCES, 2024, 690
  • [43] Consensus and diversity-fusion partial-view-shared multi-view learning
    Teng, Luyao
    Zheng, Zefeng
    NEUROCOMPUTING, 2025, 611
  • [44] Consensus Regularized Multi-View Outlier Detection
    Zhao, Handong
    Liu, Hongfu
    Ding, Zhengming
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 236 - 248
  • [45] Dual-dimensional contrastive learning for incomplete multi-view clustering
    Zhu, Zhengzhong
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    NEUROCOMPUTING, 2025, 615
  • [46] Fine-Grained Graph Learning for Multi-View Subspace Clustering
    Wang, Yidi
    Pei, Xiaobing
    Zhan, Haoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2804 - 2815
  • [47] Multi-view spectral clustering via robust local subspace learning
    Feng, Lin
    Cai, Lei
    Liu, Yang
    Liu, Shenglan
    SOFT COMPUTING, 2017, 21 (08) : 1937 - 1948
  • [48] Contrastive Multi-View Learning for 3D Shape Clustering
    Peng, Bo
    Lin, Guoting
    Lei, Jianjun
    Qin, Tianyi
    Cao, Xiaochun
    Ling, Nam
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6262 - 6272
  • [49] Model Multiple Heterogeneity via Hierarchical Multi-Latent Space Learning
    Yang, Pei
    He, Jingrui
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1375 - 1384
  • [50] Unified Representation Learning for Multi-View Clustering by Between/Within View Deep Majorization
    Zhang, Yue
    Yang, Sirui
    Huang, Weitian
    Wang, Chang-Dong
    Cai, Hongmin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 615 - 626