Learning consensus representations in multi-latent spaces for multi-view clustering

被引:0
|
作者
Ma, Qianli [1 ]
Zheng, Jiawei [1 ]
Li, Sen [1 ]
Zheng, Zhenjing [1 ]
Cottrell, Garrison W. [2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA USA
基金
中国国家自然科学基金;
关键词
Multi-view learning; Deep clustering; Latent space; Consensus representations;
D O I
10.1016/j.neucom.2024.127899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering integrates features from different views to perform clustering. This problem has attracted increasing attention in recent years because multi-view data has become more common. The mainstream methods focus on learning a common representation or decoupling the view-specific and the shared representations in subspaces and then performing clustering on the fused results. However, it is still an open question how to best enforce that the learned representations possess good clustering properties and thus improve the clustering performance. In this paper, we propose a novel unsupervised model called Deep Multiview Consensus Clustering (DMCC) to learn consensus view-specific representations in multiple latent spaces, where specificity and consistency are jointly retained for representation learning. For each view, DMCC learns view-specific representations in individual latent spaces with the help of a reconstruction target and a soft K-means objective. Furthermore, by aligning the cluster indicator matrices of each view, DMCC encourages consensus across views and enables one view to get help from other views to guide its representation learning. Thus, the learned representations are cluster-friendly within each view, and consistent across views. The proposed method achieves state -of -the -art performance in four metrics on extensive datasets. Among all datasets, our proposed method DMCC achieves an average of 2.6% and 2.5% better performance than stateof -the -art methods in RI and NMI, respectively. We also visualize the learned representations to show that our approach does learn cluster-friendly representations and to demonstrate the effectiveness of encouraging mutual consensus across views.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Incomplete Multi-View Clustering via Correntropy and Complement Consensus Learning
    Xing, Lei
    Song, Yawen
    Chen, Badong
    Yu, Changyuan
    Qin, Jing
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8063 - 8076
  • [32] Multi-view spectral clustering by simultaneous consensus graph learning and discretization
    Zhong, Guo
    Shu, Ting
    Huang, Guoheng
    Yan, Xueming
    KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [33] Consensus Learning with Complete Graph Regularization for Incomplete Multi-view Clustering
    Zhang, Jie
    Fei, Lunke
    Teng, Shaohua
    Zhu, Qinghua
    Imad, Rida
    Wen, Jie
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1485 - 1492
  • [34] A hierarchical consensus learning model for deep multi-view document clustering
    Bai, Ruina
    Huang, Ruizhang
    Chen, Yanping
    Qin, Yongbin
    Xu, Yong
    Zheng, Qinghua
    INFORMATION FUSION, 2024, 111
  • [35] Multi-view Proximity Learning for Clustering
    Lin, Kun-Yu
    Huang, Ling
    Wang, Chang-Dong
    Chao, Hong-Yang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 407 - 423
  • [36] Latent multi-view self-representations for clustering via the tensor nuclear norm
    Lu, Gui-Fu
    Zhao, Jinbiao
    APPLIED INTELLIGENCE, 2022, 52 (06) : 6539 - 6551
  • [37] Latent multi-view self-representations for clustering via the tensor nuclear norm
    Gui-Fu Lu
    Jinbiao Zhao
    Applied Intelligence, 2022, 52 : 6539 - 6551
  • [38] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Ji, Guangyan
    Lu, Gui-Fu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3813 - 3825
  • [39] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Guangyan Ji
    Gui-Fu Lu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3813 - 3825
  • [40] Multi-view clustering via view-specific consensus kernelized graph learning
    Hu, Bing
    Wu, Tong
    Han, Lixin
    Li, Shu
    Xu, Yi
    Lu, Gui-fu
    NEUROCOMPUTING, 2025, 633