Learning consensus representations in multi-latent spaces for multi-view clustering

被引:0
|
作者
Ma, Qianli [1 ]
Zheng, Jiawei [1 ]
Li, Sen [1 ]
Zheng, Zhenjing [1 ]
Cottrell, Garrison W. [2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA USA
基金
中国国家自然科学基金;
关键词
Multi-view learning; Deep clustering; Latent space; Consensus representations;
D O I
10.1016/j.neucom.2024.127899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering integrates features from different views to perform clustering. This problem has attracted increasing attention in recent years because multi-view data has become more common. The mainstream methods focus on learning a common representation or decoupling the view-specific and the shared representations in subspaces and then performing clustering on the fused results. However, it is still an open question how to best enforce that the learned representations possess good clustering properties and thus improve the clustering performance. In this paper, we propose a novel unsupervised model called Deep Multiview Consensus Clustering (DMCC) to learn consensus view-specific representations in multiple latent spaces, where specificity and consistency are jointly retained for representation learning. For each view, DMCC learns view-specific representations in individual latent spaces with the help of a reconstruction target and a soft K-means objective. Furthermore, by aligning the cluster indicator matrices of each view, DMCC encourages consensus across views and enables one view to get help from other views to guide its representation learning. Thus, the learned representations are cluster-friendly within each view, and consistent across views. The proposed method achieves state -of -the -art performance in four metrics on extensive datasets. Among all datasets, our proposed method DMCC achieves an average of 2.6% and 2.5% better performance than stateof -the -art methods in RI and NMI, respectively. We also visualize the learned representations to show that our approach does learn cluster-friendly representations and to demonstrate the effectiveness of encouraging mutual consensus across views.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Projective Incomplete Multi-View Clustering
    Deng, Shijie
    Wen, Jie
    Liu, Chengliang
    Yan, Ke
    Xu, Gehui
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10539 - 10551
  • [22] Efficient multi-view clustering networks
    Ke, Guanzhou
    Hong, Zhiyong
    Yu, Wenhua
    Zhang, Xin
    Liu, Zeyi
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14918 - 14934
  • [23] Multi-view Clustering of Multilingual Documents
    Kim, Young-Min
    Amini, Massih-Reza
    Goutte, Cyril
    Gallinari, Patrick
    SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, 2010, : 821 - 822
  • [24] Multi-View Maximum Margin Clustering With Privileged Information Learning
    Xiao, Yanshan
    Zhang, Jianwei
    Liu, Bo
    Zhao, Liang
    Kong, Xiangjun
    Hao, Zhifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2719 - 2733
  • [25] Multi-view clustering via neighbor domain correlation learning
    Xiaocui Li
    Ke Zhou
    Chunhua Li
    Xinyu Zhang
    Yu Liu
    Yangtao Wang
    Neural Computing and Applications, 2021, 33 : 3403 - 3415
  • [26] Partial Multi-view Subspace Clustering
    Xu, Nan
    Guo, Yanqing
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1794 - 1801
  • [27] Efficient multi-view clustering networks
    Guanzhou Ke
    Zhiyong Hong
    Wenhua Yu
    Xin Zhang
    Zeyi Liu
    Applied Intelligence, 2022, 52 : 14918 - 14934
  • [28] MVFCC: A Multi-View Fuzzy Consensus Clustering Model for Malware Threat Attribution
    Haddadpajouh, Hamed
    Azmoodeh, Amin
    Dehghantanha, Ali
    Parizi, Reza M.
    IEEE ACCESS, 2020, 8 : 139188 - 139198
  • [29] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362
  • [30] Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Langone, Rocco
    Suykens, Johan A. K.
    INFORMATION FUSION, 2018, 44 : 46 - 56