Reversible operation of solid oxide cells fed with syngas derived from underground coal gasification

被引:2
作者
Liu, Shuai [1 ]
Sang, Junkang [2 ]
Lu, Cun [2 ]
Yang, Jun [2 ]
Zhang, Yang [2 ]
Zhu, Liangzhu [2 ]
Wang, Jianxin [2 ]
Chai, Maorong [3 ]
Chen, Liang [2 ]
Guan, Wanbing [2 ]
机构
[1] NingboTech Univ, Sch Mechatron & Energy Engn, Ningbo 315100, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Fuel Cells & Electroyzers Technol Zhej, Ningbo 315200, Zhejiang, Peoples R China
[3] State Power Investment Corp Hydrogen Energy Co Ltd, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible solid oxide cell; Underground coal gasification; Syngas; CO; 2; electrolysis; Density functional theory; FUEL-CELL; PERFORMANCE; ELECTROLYSIS; HYDROGEN; METHANE; ENERGY;
D O I
10.1016/j.ijhydene.2024.07.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Underground coal gasification (UCG) technology can directly convert coal resources to syngas underground, making it important for coal utilization. In this work, the power generation, CO2 electrolysis, and reversible operation of flat-tube solid oxide cells (SOCs) fueled with UCG syngas were studied. The factors affecting the performances of flat-tube solid oxide cells were investigated. Fueled with syngas (Swan Hills, Canada) at 750 degrees C, the flat-tube cell achieved a maximum power density of 329.4 mW cm-2 and a current density of 650.8 mA cm-2 at 1.4 V. 100-cycle (250 h) reversible operation of flat-tube SOCs running on syngas (Swan Hills) was accomplished. No carbon deposition on the surfaces of the cell fuel channels was detected. The syngas conversion in flat-tube cells was illuminated based on density functional theory calculations.
引用
收藏
页码:1456 / 1463
页数:8
相关论文
共 51 条
[21]   Underground coal gasification modelling in deep coal seams and its implications to carbon storage in a climate-conscious world [J].
Jiang, Liangliang ;
Chen, Shanshan ;
Chen, Yanpeng ;
Chen, Zhangxin ;
Sun, Fenjin ;
Dong, Xiaohu ;
Wu, Keliu .
FUEL, 2023, 332
[22]   Optimal design of methane tri-reforming reactor to produce proper syngas for Fischer-Tropsch and methanol synthesis processes: A comparative analysis between different side-feeding strategies [J].
Khademi, Mohammad Hasan ;
Alipour-Dehkordi, Afshar ;
Tabesh, Masoud .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (27) :14441-14454
[23]   Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes [J].
Koh, JH ;
Kang, BS ;
Lim, HC ;
Yoo, YS .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (02) :A12-A15
[24]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[25]  
Leonide Andre., 2009, ECS T, V19, P81, DOI DOI 10.1149/1.3247567
[26]   Different performance and mechanisms of CO2 electrolysis with CO and H2 as protective gases in solid oxide electrolysis cell [J].
Liang, Jingjing ;
Han, Minfang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) :18606-18618
[27]   Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification [J].
Liu, Huan ;
Liu, Shuqin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (14) :9630-9643
[28]   Thermodynamics assessment and dynamic simulation of a low-carbon syngas-fueled SOFC system using a green hydrogen blend [J].
Mehr, A. S. ;
Ilkhani, M. ;
Sabernia, S. ;
Nooshmand, Sh. ;
Gholamian, E. ;
Assareh, E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 :1354-1373
[29]   Reversible solid-oxide cells for clean and sustainable energy [J].
Mogensen, M. B. ;
Chen, M. ;
Frandsen, H. L. ;
Graves, C. ;
Hansen, J. B. ;
Hansen, K., V ;
Hauch, A. ;
Jacobsen, T. ;
Jensen, S. H. ;
Skafte, T. L. ;
Sun, X. .
CLEAN ENERGY, 2019, 3 (03) :175-201
[30]   Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies [J].
Mondal, Ujjal ;
Yadav, Ganapati D. .
GREEN CHEMISTRY, 2021, 23 (21) :8361-8405