Reduced resonance schemes and Chen ranks

被引:1
作者
Aprodu, Marian [1 ,2 ]
Farkas, Gavril [3 ]
Raicu, Claudiu [1 ,4 ]
Suciu, Alexander I. [5 ]
机构
[1] Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
[3] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[4] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[5] Northeastern Univ, Dept Math, Boston, MA 02115 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2024年 / 2024卷 / 814期
基金
欧洲研究理事会;
关键词
ALGEBRAIC INVARIANTS; BUNDLES; SURFACE; COHOMOLOGY; VARIETIES;
D O I
10.1515/crelle-2024-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The resonance varieties are cohomological invariants that are studied in a variety of topological, combinatorial, and geometric contexts. We discuss their scheme structure in a general algebraic setting and introduce various properties that ensure the reducedness of the associated projective resonance scheme. We prove an asymptotic formula for the Hilbert series of the associated Koszul module, then discuss applications to vector bundles on algebraic curves and to Chen ranks formulas for finitely generated groups, with special emphasis on K & auml;hler and right-angled Artin groups.
引用
收藏
页码:205 / 240
页数:36
相关论文
共 45 条
[1]  
Aprodu M., MISCELLANEOUS EFFECT
[2]   Higher resonance schemes and Koszul modules of simplicial complexes [J].
Aprodu, Marian ;
Farkas, Gavril ;
Raicu, Claudiu ;
Sammartano, Alessio ;
Suciu, Alexander I. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) :787-805
[3]   Koszul modules with vanishing resonance in algebraic geometry [J].
Aprodu, Marian ;
Farkas, Gavril ;
Raicu, Claudiu ;
Weyman, Jerzy .
SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (02)
[4]   TOPOLOGICAL INVARIANTS OF GROUPS AND KOSZUL MODULES [J].
Aprodu, Marian ;
Farkas, Gavril ;
Papadima, Stefan ;
Raicu, Claudiu ;
Weyman, Jerzy .
DUKE MATHEMATICAL JOURNAL, 2022, 171 (10) :2013-2046
[5]   Koszul modules and Green's conjecture [J].
Aprodu, Marian ;
Farkas, Gavril ;
Papadima, Stefan ;
Raicu, Claudiu ;
Weyman, Jerzy .
INVENTIONES MATHEMATICAE, 2019, 218 (03) :657-720
[6]  
ARBARELLO E, 1985, GEOMETRY ALGEBRAIC C
[7]  
ATIYAH MF, 1969, GLOBAL ANAL, P73
[8]  
Catanese F, 2003, ADV GEOM, pS13
[9]   Kodaira fibrations and beyond: methods for moduli theory [J].
Catanese, Fabrizio .
JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02) :91-174
[10]   Double Kodaira fibrations [J].
Catanese, Fabrizio ;
Rollenske, Soenke .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 628 :205-233