H2-solutions for an Ostrosky-Hunter type equation

被引:0
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
关键词
Existence; uniqueness; stability; Ostrosky-Hunter type equations; Cauchy problem; WEAK ROTATION LIMIT; GLOBAL WELL-POSEDNESS; NONHOMOGENEOUS INITIAL-BOUNDARY; GENERALIZED OSTROVSKY EQUATION; FINITE-DIFFERENCE SCHEME; REGULARIZED SHORT-PULSE; SOLITARY WAVES; CAUCHY-PROBLEM; CONTINUUM SPECTRUM; VAKHNENKO EQUATION;
D O I
10.1080/00036811.2024.2384539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Ostrosky-Hunter equation provides a model for small-amplitude long waves in a rotating fluid of finite depth, for the evolution of nonlinear propagation of optical pulses of a few oscillations duration in dielectric media, and for the evolution of the propagation of ultra-short light pulses in silica optical fibers. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation.
引用
收藏
页码:854 / 879
页数:26
相关论文
共 98 条