Human Activity Recognition Using Convolutional Neural Networks

被引:0
作者
Awad, Omer Fawzi [1 ]
Ahmed, Saadaldeen Rashid [2 ,3 ]
Shaker, Atheel Sabih [4 ]
Majeed, Duaa A. [5 ]
Hussain, Abadal-Salam T. [6 ]
Taha, Taha A. [7 ]
机构
[1] Tikrit Univ, Coll Med, Dept Surg, Tikrit, Salahalden, Iraq
[2] Alayan Univ, Coll Engn, Artificial Intelligence Engn Dept, Nasiriyah, Iraq
[3] Bayan Univ, Comp Sci Dept, Erbil, Kurdistan, Iraq
[4] Baghdad Coll Econ Sci Univ, Comp Engn Tech, Baghdad, Iraq
[5] Baghdad Univ, Aeronaut Engn Dept, Baghdad, Iraq
[6] Al Kitab Univ, Tech Engn Coll, Dept Med Instrumentat Tech Engn, Altun Kupri, Kirkuk, Iraq
[7] Northern Tech Univ, Unit Renewable Energy, Kirkuk, Iraq
来源
FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024 | 2024年 / 1035卷
关键词
CNN; Classification; Real-time; Resnet101; HAR;
D O I
10.1007/978-3-031-62871-9_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research addresses human activity recognition (HAR) using a deep learning framework. Particularly convolutional neural networks (CNNs) to identify and categorize human actions using sensor data. Employing a complete dataset containing numerous actions. It features reclining, sitting, standing, and different walking modes. The study applies CNN models to attain the best precision and accuracy. The models' strong performance in these CNN. Constraints in dataset diversity and size could impact real-world applicability. This article asks for more investigation and design. It combines additional sensors and concentrates emphasis on real-time HAR systems. The paper illustrates the potential of deep learning models in HAR.
引用
收藏
页码:258 / 274
页数:17
相关论文
共 26 条
[1]   Program Source-Code Re-Modularization Using a Discretized and Modified Sand Cat Swarm Optimization Algorithm [J].
Arasteh, Bahman ;
Seyyedabbasi, Amir ;
Rasheed, Jawad ;
Abu-Mahfouz, Adnan M. .
SYMMETRY-BASEL, 2023, 15 (02)
[2]   Vision-based human activity recognition: a survey [J].
Beddiar, Djamila Romaissa ;
Nini, Brahim ;
Sabokrou, Mohammad ;
Hadid, Abdenour .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) :30509-30555
[3]   A Conceptual Multi-Layer Framework for the Detection of Nighttime Pedestrian in Autonomous Vehicles Using Deep Reinforcement Learning [J].
Farooq, Muhammad Shoaib ;
Khalid, Haris ;
Arooj, Ansif ;
Umer, Tariq ;
Asghar, Aamer Bilal ;
Rasheed, Jawad ;
Shubair, Raed M. M. ;
Yahyaoui, Amani .
ENTROPY, 2023, 25 (01)
[4]   Evaluating Techniques Based on Supervised Learning Methods in Casas Kyoto Dataset for Human Activity Recognition [J].
Garcia-Restrepo, Johanna-Karinna ;
Patricia Ariza-Colpas, Paola ;
Butt-Aziz, Shariq ;
Alberto Pineres-Melo, Marlon ;
Naz, Sumera ;
De-la-hoz-Franco, Emiro .
COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2023, 2023, 14164 :253-269
[5]   A Survey on Deep Learning for Human Activity Recognition [J].
Gu, Fuqiang ;
Chung, Mu-Huan ;
Chignell, Mark ;
Valaee, Shahrokh ;
Zhou, Baoding ;
Liu, Xue .
ACM COMPUTING SURVEYS, 2021, 54 (08)
[6]  
Gupta S., 2021, INT J INF MANAG DATA, V1, P100046, DOI DOI 10.1016/J.JJIMEI.2021.100046
[7]   Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches [J].
Hayat, Ahatsham ;
Morgado-Dias, Fernando ;
Bhuyan, Bikram Pratim ;
Tomar, Ravi .
INFORMATION, 2022, 13 (06)
[8]   An overview of Human Action Recognition in sports based on Computer Vision [J].
Host, Kristina ;
Ivasic-Kos, Marina .
HELIYON, 2022, 8 (06)
[9]  
Tang CI, 2021, Arxiv, DOI arXiv:2011.11542
[10]   Vision-based human action recognition: An overview and real world challenges [J].
Jegham, Imen ;
Ben Khalifa, Anouar ;
Alouani, Ihsen ;
Mahjoub, Mohamed Ali .
FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION, 2020, 32