NECESSARY DENSITY CONDITIONS FOR SAMPLING AND INTERPOLATION IN SPECTRAL SUBSPACES OF ELLIPTIC DIFFERENTIAL OPERATORS

被引:0
作者
Groechenig, Karlheinz [1 ]
Klotz, A. ndreas [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
来源
ANALYSIS & PDE | 2024年 / 17卷 / 02期
基金
奥地利科学基金会;
关键词
spectral subspace; Paley-Wiener space; bandwidth; Beurling density; sampling; interpolation; elliptic operator; regularity theory; slow oscillation; Higson compactification; SPACE;
D O I
10.2140/apde.2024.17.587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove necessary density conditions for sampling in spectral subspaces of a second -order uniformly elliptic differential operator on R d with slowly oscillating symbol. For constant -coefficient operators, these are precisely Landau's necessary density conditions for bandlimited functions, but for more general elliptic differential operators it has been unknown whether such a critical density even exists. Our results prove the existence of a suitable critical sampling density and compute it in terms of the geometry defined by the elliptic operator. In dimension d = 1, functions in a spectral subspace can be interpreted as functions with variable bandwidth, and we obtain a new critical density for variable bandwidth. The methods are a combination of the spectral theory and the regularity theory of elliptic partial differential operators, some elements of limit operators, certain compactifications of R d , and the theory of reproducing kernel Hilbert spaces.
引用
收藏
页码:587 / 616
页数:34
相关论文
共 46 条
  • [1] Agmon Shmuel, 1965, Van Nostrand Mathematical Studies, V2
  • [2] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [3] Beurling A., 1989, COLLECTED WORKS ARNE
  • [4] Beurling A., 1966, Some Recent Advances in the Basic Sciences, V1, P109
  • [5] Cordes H. O., 1979, Lecture Notes in Mathematics, V756
  • [6] Heat Kernel Generated Frames in the Setting of Dirichlet Spaces
    Coulhon, T.
    Kerkyacharian, G.
    Petrushev, P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) : 995 - 1066
  • [7] C*-ALGEBRAS ASSOCIATED WITH SOME SECOND ORDER DIFFERENTIAL OPERATORS
    Davies, E. B.
    Georgescu, V.
    [J]. JOURNAL OF OPERATOR THEORY, 2013, 70 (02) : 437 - 450
  • [8] Engelking R., 1977, GEN TOPOLOGY, V60
  • [9] Feichtinger, 2004, Contemp. Math., V345, P137
  • [10] Geometric Space-Frequency Analysis on Manifolds
    Feichtinger, Hans G.
    Fuehr, Hartmut
    Pesenson, Isaac Z.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1294 - 1355