Adaptive Feature Swapping for Unsupervised Domain Adaptation

被引:3
|
作者
Zhuo, Junbao [1 ]
Zhao, Xingyu [2 ]
Cui, Shuhao [3 ]
Huang, Qingming [1 ,4 ]
Wang, Shuhui [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] Meituan Inc, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Domain Adaptation; Object Recognition; Semantic Segmentation;
D O I
10.1145/3581783.3611896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bottleneck of visual domain adaptation always lies in the learning of domain invariant representations. In this paper, we present a simple but effective technique named Adaptive Feature Swapping for learning domain invariant features in Unsupervised Domain Adaptation (UDA). Adaptive Feature Swapping aims to select semantically irrelevant features from labeled source data and unlabeled target data and swap these features with each other. Then the merged representations are also utilized for training with prediction consistency constraints. In this way, the model is encouraged to learn representations that are robust to domain-specific information. We develop two swapping strategies including channel swapping and spatial swapping. The former encourages the model to squeeze redundancy out of features and pay more attention to semantic information. The latter motivates the model to be robust to the background and focus on objects. We conduct experiments on object recognition and semantic segmentation in UDA setting and the results show that Adaptive Feature Swapping can promote various existing UDA methods. Our codes are publicly available at https://github.com/junbaoZHUO/AFS.
引用
收藏
页码:7017 / +
页数:12
相关论文
共 50 条
  • [41] Unsupervised domain adaptation with adversarial distribution adaptation network
    Qiang Zhou
    Wen’an Zhou
    Shirui Wang
    Ying Xing
    Neural Computing and Applications, 2021, 33 : 7709 - 7721
  • [42] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13) : 7709 - 7721
  • [43] Unsupervised double weighted domain adaptation
    Li, Jingyao
    Li, Zhanshan
    Lu, Shuai
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08) : 3545 - 3566
  • [44] Unsupervised double weighted domain adaptation
    Jingyao Li
    Zhanshan Li
    Shuai Lü
    Neural Computing and Applications, 2021, 33 : 3545 - 3566
  • [45] Heterogeneous Domain Adaptation: An Unsupervised Approach
    Liu, Feng
    Zhang, Guangquan
    Lu, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5588 - 5602
  • [46] A Survey of Unsupervised Deep Domain Adaptation
    Wilson, Garrett
    Cook, Diane J.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (05)
  • [47] UNSUPERVISED DOMAIN ADAPTATION WITH COPULA MODELS
    Tran, Cuong D.
    Rudovic, Ognjen
    Pavlovic, Vladimir
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [48] Transfer Domain Class Clustering for Unsupervised Domain Adaptation
    Fan, Yunxin
    Yan, Gang
    Li, Shuang
    Song, Shiji
    Wang, Wei
    Peng, Xinping
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT) 2017: ELECTRICAL TRACTION, 2018, 482 : 827 - 835
  • [49] Cross Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    Xie, Guo-Sen
    IEEE ACCESS, 2020, 8 : 139052 - 139069
  • [50] CUDA: Contradistinguisher for Unsupervised Domain Adaptation
    Balgi, Sourabh
    Dukkipati, Ambedkar
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 21 - 30