Adaptive Feature Swapping for Unsupervised Domain Adaptation

被引:3
|
作者
Zhuo, Junbao [1 ]
Zhao, Xingyu [2 ]
Cui, Shuhao [3 ]
Huang, Qingming [1 ,4 ]
Wang, Shuhui [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] Meituan Inc, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Domain Adaptation; Object Recognition; Semantic Segmentation;
D O I
10.1145/3581783.3611896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bottleneck of visual domain adaptation always lies in the learning of domain invariant representations. In this paper, we present a simple but effective technique named Adaptive Feature Swapping for learning domain invariant features in Unsupervised Domain Adaptation (UDA). Adaptive Feature Swapping aims to select semantically irrelevant features from labeled source data and unlabeled target data and swap these features with each other. Then the merged representations are also utilized for training with prediction consistency constraints. In this way, the model is encouraged to learn representations that are robust to domain-specific information. We develop two swapping strategies including channel swapping and spatial swapping. The former encourages the model to squeeze redundancy out of features and pay more attention to semantic information. The latter motivates the model to be robust to the background and focus on objects. We conduct experiments on object recognition and semantic segmentation in UDA setting and the results show that Adaptive Feature Swapping can promote various existing UDA methods. Our codes are publicly available at https://github.com/junbaoZHUO/AFS.
引用
收藏
页码:7017 / +
页数:12
相关论文
共 50 条
  • [31] Structure-Aware Feature Fusion for Unsupervised Domain Adaptation
    Chen, Qingchao
    Liu, Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10567 - 10574
  • [32] Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
    Deng, Wanxia
    Liao, Qing
    Zhao, Lingjun
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7842 - 7855
  • [33] Heterogeneous Unsupervised Domain Adaptation Based on Fuzzy Feature Fusion
    Liu, Feng
    Zhang, Guangquan
    Lu, Jie
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [34] Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation
    Chen, Chao
    Chen, Zhihong
    Jiang, Boyuan
    Jin, Xinyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [35] Adaptive Ensembling: Unsupervised Domain Adaptation for Political Document Analysis
    Desai, Shrey
    Sinno, Barea
    Rosenfeld, Alex
    Li, Junyi Jessy
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4718 - 4730
  • [36] Unsupervised domain adaptation based on adaptive local manifold learning
    Shi, Kaiming
    Liu, Zhonghua
    Lu, Wenpeng
    Ou, Weihua
    Yang, Chunlei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [37] Unsupervised Domain Adaptation with Multiple Domain Discriminators and Adaptive Self-Training
    Spadotto, Teo
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2845 - 2852
  • [38] Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings
    Dou, Zi-Yi
    Hu, Junjie
    Anastasopoulos, Antonios
    Neubig, Graham
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 1417 - 1422
  • [39] Feature Analysis of Marginalized Stacked Denoising Autoenconder for Unsupervised Domain Adaptation
    Wei, Pengfei
    Ke, Yiping
    Goh, Chi Keong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (05) : 1321 - 1334
  • [40] Multi-Partition Feature Alignment Network for Unsupervised Domain Adaptation
    Sukhija, Sanatan
    Varadarajan, Srenivas
    Krishnan, Narayanan C.
    Rai, Sujit
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,