2-LOCAL DERIVATIONS ON C ∗-ALGEBRAS

被引:1
作者
Huang, Wenbo [1 ,2 ]
Li, Jiankui [2 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
C *-algebra; derivation; 2-local derivation; LOCAL AUTOMORPHISMS; ALGEBRAS;
D O I
10.4134/BKMS.b230431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. In this paper, we prove that every 2-local derivation on several classes of C*-algebras, such as unital properly infinite, type I or residually finite-dimensional C*-algebras, is a derivation. We show that the following statements are equivalent: (1) every 2-local derivation on a C*-algebra is a derivation, (2) every 2-local derivation on a unital primitive antiliminal and no properly infinite C*-algebra is a derivation. We also show that every 2-local derivation on a group C*-algebra C*(F) or a unital simple infinite-dimensional quasidiagonal C*-algebra, which is stable finite antiliminal C*-algebra, is a derivation.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 26 条
[11]  
Dixmier J., 1977, C*-algebras
[12]   Characterization of 2-Local Derivations and Local Lie Derivations on Some Algebras [J].
He, J. ;
Li, J. ;
An, G. ;
Huang, W. .
SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (04) :721-730
[13]  
Herstein I.N.N., 1957, Proc. Am. Math. Soc, V8, P1104, DOI [DOI 10.1090/S0002-9939-1957-0095864-2, 10.2307/2032688]
[14]   2-LOCAL DERIVATIONS ON SEMISIMPLE BANACH ALGEBRAS WITH MINIMAL LEFT IDEALS [J].
HUANG, W. E. N. B. O. ;
LI, J. I. A. N. K. U. I. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) :321-332
[15]   Derivations and 2-Local Derivations on Matrix Algebras and Algebras of Locally Measurable Operators [J].
Huang, Wenbo ;
Li, Jiankui ;
Qian, Wenhua .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) :227-240
[16]  
Johnson BE, 2000, T AM MATH SOC, V353, P313
[17]   LOCAL DERIVATIONS [J].
KADISON, RV .
JOURNAL OF ALGEBRA, 1990, 130 (02) :494-509
[18]   Local automorphisms and derivations on certain C*-algebras [J].
Kim, SO ;
Kim, JS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3303-3307
[19]   Local automorphisms and derivations on Mn [J].
Kim, SO ;
Kim, JS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) :1389-1392
[20]   A CHARACTERIZATION OF MULTIPLICATIVE LINEAR FUNCTIONALS IN BANACH ALGEBRAS [J].
KOWALSKI, S ;
SLODKOWSKI, Z .
STUDIA MATHEMATICA, 1980, 67 (03) :215-223