2-LOCAL DERIVATIONS ON C ∗-ALGEBRAS

被引:1
作者
Huang, Wenbo [1 ,2 ]
Li, Jiankui [2 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
C *-algebra; derivation; 2-local derivation; LOCAL AUTOMORPHISMS; ALGEBRAS;
D O I
10.4134/BKMS.b230431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. In this paper, we prove that every 2-local derivation on several classes of C*-algebras, such as unital properly infinite, type I or residually finite-dimensional C*-algebras, is a derivation. We show that the following statements are equivalent: (1) every 2-local derivation on a C*-algebra is a derivation, (2) every 2-local derivation on a unital primitive antiliminal and no properly infinite C*-algebra is a derivation. We also show that every 2-local derivation on a group C*-algebra C*(F) or a unital simple infinite-dimensional quasidiagonal C*-algebra, which is stable finite antiliminal C*-algebra, is a derivation.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 26 条
[1]  
Aupetit B, 1996, STUD MATH, V121, P115
[2]   A survey on local and 2-local derivations on C*- and von Neuman algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen ;
Peralta, Antonio M. .
TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 :73-126
[3]   2-Local derivations on von Neumann algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen .
POSITIVITY, 2015, 19 (03) :445-455
[4]   2-Local derivations on matrix algebras over commutative regular algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen ;
Alauadinov, Amir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) :1294-1311
[5]  
Blackadar B., 2006, ENCYL MATH SCI, V122, P517, DOI [10.1007/3-540-28517-2, 10.1007/3- 540-28517-2]
[6]  
Brown N. P., 2004, Adv. Stud. Pure Math., V38, P19
[7]   THE FULL CSTAR-ALGEBRA OF THE FREE GROUP ON 2 GENERATORS [J].
CHOI, MD .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 87 (01) :41-48
[8]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[9]   THE SOCLE AND FINITE-DIMENSIONALITY OF A SEMIPRIME BANACH ALGEBRA [J].
DALLA, L ;
GIOTOPOULOS, S ;
KATSELI, N .
STUDIA MATHEMATICA, 1989, 92 (02) :201-204
[10]  
Davidson K.R., 1988, Pitman Research Notes in Mathematics Series. Triangular forms for Operator Algebras on Hilbert Space, V191