Near-infrared technology in agriculture: Rapid, simultaneous, and non-destructive determination of inner quality parameters on intact coffee beans

被引:0
作者
Munawar, Agus Arip [1 ]
Kusumiyati, Kusumiyati [2 ]
Andasuryani, Andasuryani [3 ]
Yusmanizar, Yusmanizar [1 ]
Adrizal, Adrizal [4 ]
机构
[1] Syiah Kuala Univ, Dept Agr Engn, Banda Aceh, Indonesia
[2] Padjadjaran State Univ, Dept Agron, Jatinangor, Indonesia
[3] Andalas Univ, Dept Agr Engn, Padang, Indonesia
[4] Andalas Univ, Dept Anim Husb, Padang, Indonesia
来源
OPEN AGRICULTURE | 2024年 / 9卷 / 01期
关键词
NIRS; coffee; agriculture; technology; NIR SPECTROSCOPY;
D O I
10.1515/opag-2022-0290
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study delves into the ability of near infrared (NIR) techniques by means of a self-developed portable sensing device near-infrared reflectance spectroscopy (NIRS) i16 USK instrument to accurately predict the moisture content (MC) and chlorogenic acid (CGA) within intact coffee beans through the development of calibration models. Spectral absorbance measurements were conducted across the 1,000-2,500 nm wavelength range. Leveraging two multivariate calibration approaches namely principal component regression and partial least square regression (PLSR) for 74 bulk coffee beans (60 g) in calibration and 36 bulk coffee beans samples in external validation. The results reveal a notably high determination coefficient (R 2) of 0.984 for MC and 0.908 for CGA in calibration using PLSR, indicating the feasibility of rapid, simultaneous, and non-destructive prediction. Furthermore, upon external validation, the PLSR model exhibited consistent predictive performance, with R 2 values for MC and CGA contents reaching 0.978 and 0.846, respectively. Consequently, these outcomes underscore NIR as an effective, concurrent, and non-invasive means to assess the quality parameters and attributes of intact coffee beans, presenting promising prospects for the advancement of coffee quality evaluation.
引用
收藏
页数:9
相关论文
共 25 条
[1]   Rapid Prediction of Moisture Content in Intact Green Coffee Beans Using Near Infrared Spectroscopy [J].
Adnan, Adnan ;
von Hoersten, Dieter ;
Pawelzik, Elke ;
Moerlein, Daniel .
FOODS, 2017, 6 (05) :1-11
[2]  
[Anonymous], 2003, TECHNICAL COMMITTEE
[3]   Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy [J].
Balabin, Roman M. ;
Lomakina, Ekaterina I. ;
Safieva, Ravilya Z. .
FUEL, 2011, 90 (05) :2007-2015
[4]   Portable near infrared spectroscopy applied to quality control of Brazilian coffee [J].
Correia, Radigya M. ;
Tosato, Flavia ;
Domingos, Eloilson ;
Rodrigues, Rayza R. T. ;
Aquino, Luiz Felipe M. ;
Filgueiras, Paulo R. ;
Lacerda, Valdemar, Jr. ;
Romao, Wanderson .
TALANTA, 2018, 176 :59-68
[5]   Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil [J].
dos Santos, Uemeson Jose ;
de Melo Dematte, Jose Alexandre ;
Cezar Menezes, Romulo Simoes ;
Dotto, Andre Carnieletto ;
Barbosa Guimaraes, Clecia Cristina ;
Rodrigues Alves, Bruno Jose ;
Primo, Dario Costa ;
de Sa Barretto Sampaio, Everardo Valadares .
GEODERMA REGIONAL, 2020, 23
[6]   Non-destructive measurement of internal browning in mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis [J].
Gabriels, Suzan H. E. J. ;
Mishra, Puneet ;
Mensink, Manon G. J. ;
Spoelstra, Patrick ;
Woltering, Ernst J. .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2020, 166
[7]   Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy [J].
Garcia-Martin, Juan Francisco ;
Javier Ales-Alvarez, Francisco ;
del Carmen Lopez-Barrera, Maria ;
Martin-Dominguez, Irene ;
Alvarez-Mateos, Paloma .
FUEL, 2019, 240 :10-15
[8]   Fourier Transform Infrared Spectroscopy enables rapid differentiation of fresh and frozen/thawed chicken [J].
Grunert, Tom ;
Stephan, Roger ;
Ehling-Schulz, Monika ;
Johler, Sophia .
FOOD CONTROL, 2016, 60 :361-364
[9]   Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango [J].
Hayati, Rita ;
Munawar, Agus Arip ;
Fachruddin, F. .
DATA IN BRIEF, 2020, 30
[10]   Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation [J].
Lemos, Mayara Fumiere ;
Salustriano, Nathacha de Andrade ;
de Souza Costa, Mariana Merigueti ;
Lirio, Karla ;
Almeida da Fonseca, Aymbire Francisco ;
Pacheco, Henrique Poltronieri ;
Endringer, Denise Coutinho ;
Fronza, Marcio ;
Scherer, Rodrigo .
JOURNAL OF SAUDI CHEMICAL SOCIETY, 2022, 26 (03)